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Introduction

In this work we will study the existence of bounded positive solutions for some elliptic
system. In general, this type of system has the form

!
"

#

−∆u + V1(x)u = f(x, u, v) in Ω

−∆v + V2(x)v = g(x, u, v) in Ω
(1)

where Ω is some domain in RN , f, g : Ω×R2 → R are caraethedory functions and where Vi is a
potential satisfying some properties. Let us just mention two classes of variational systems that
have been object of much research in these last decades, a gradient system and a Hamiltonian
system (see [19]). More precisely,

a) the System (1) is said to be gradient, if there exists a differentiable function
G : Ω× R2 → R such that

∂G

∂u
= f and

∂G

∂v
= g,

b) and the System (1) is said to be Hamiltonian, if there exists a differentiable function
F : Ω× R2 → R such that

∂F

∂u
= g and

∂F

∂v
= f.

The variational terminology comes from the fact that in both case, System (1) has a naturally
associated functional with the system. However, if the System (1) is not variational, we may
use another methods such as:

The moving planes method. In this method is essentially restricted to the case f =
f(v) and g = g(u), with f, g nondecreasing. Furthermore, either f, g have to satisfy some
technical assumption or Ω be convex, see [16]. This method was first introduced in [21]
for the scalar case.

Blow-up method. This method proceeds by contradiction, by assuming that (1) do
not have a priori bounds for the positive solutions. This method was introduced by Gidas
and Spruk in [23] for scalar problems. Later, it was successfully extended to many types
of systems, for instance see [22, 44].

Hardy-Sobolev inequalities. This method is based on using the first eigenfunction
of the Laplacian as a multiplier to derive an estimate on the nonlinear terms. Under
proper growth assumptions on f, g, this estimate is then improved on an H1 bound by
using Hardy-Sobolev inequalities, and then into a uniform bound using some bootstrap
arguments. This method was introduced by Brezis and Turner in [10] for scalar problems
and then extended to certain classes of systems in [13, 15,16].

Lower and upper solution method. This method, can be applied, for instance, when
the nonlinearities have a sublinear growth near zero. For instance, see [35].
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The main objective of this work is to establish the existence of two bounded solutions
for a certain, not necessarily variational, system defined in RN . The first solution will be
obtained by the lower an upper method and the second solution will be obtained considering
an auxiliary problem, which is variational. More precisely, we will study the following elliptic
system involving Schrödinger operators

!
$"

$#

−∆u + V1(x)u = λρ1(x)(u + 1)r(v + 1)p in RN

−∆v + V2(x)v = µρ2(x)(u + 1)q(v + 1)s in RN ,

u(x), v(x) → 0 as |x| → ∞.

(Sλ,µ)

where λ, µ > 0, p, q, r, s ≥ 0, N ≥ 3 and Vi is a nonnegative vanish potential satisfying

ai
1 + |x|α ≤ Vi(x) ≤

Ai

1 + |x|α for all x ∈ RN (Hα
V )

for some constants α, Ai > 0 and ai ≥ 0, i = 1, 2. The weight ρi ∈ L∞(RN) satisfies

0 < ρi(x) ≤
ki

1 + |x|β in RN , (Hρ)

with α + β > 4 and ki > 0, i = 1, 2.
Notice that this type of system such as (Sλ,µ) appears when we are looking for stationary waves
solutions of the following coupled nonlinear Schrödinger equations

!
$"

$#

iφt + ∆φ − (V1(x) + ω1)φ + λρ1(x)(u + 1)r(v + 1)p = 0

iψt + ∆ψ + (V2(x) + ω2)ψ + µρ2(x)(u + 1)q(v + 1)s = 0,

φ(t, x),ψ(t, x) : [0,∞) × RN → C
(2)

where the solution is given by

(φ,ψ) = (eiω1tu(x), eiω2tv(x)), ω1,ω2 ∈ R+. (3)

This kind of Schrödinger system can be used to describe many physical phenomena, such as the
propagation of pulses in optical fiber [33] and a binary mixture of Bose-Einstein condensates
[18]. The mathematical studies of stationary wave solutions for Schrödinger equations has
attracted much attention since 1970s, see e.g. [6,40]. Using (3), it is easy to see that getting a
stationary wave solution of (2) is equivalent to solving the elliptic system (Sλ,µ) for (u(x), v(x)).

Before dealing with the main results of System (Sλ,µ), we will give some know facts about
the scalar equation

−∆u = ρ(x) in RN . (4)

We will say that ρ has the so called property (H), introduced by Brezis and Kamin [9], if the
equation (4) has a bounded solution. In Chapter 2 we prove that the sublinear problem

−∆u = ρ(x)uq in RN , N ≥ 3 (5)

where 0 < q < 1, has a bounded positive solution if and only if ρ has the property (H). This
result is due to the celebrated paper [9] by Brezis and Kamin. An important result, which we
present in the same section, is that Problem (5) has a bounded solution if and only if

U(x) =
c

|x|N−2
∗ ρ ∈ L∞%

RN
&
. (6)
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Moreover, in Proposition 2.1.13, we will show that when ρ is a radially symmetric function,
then for all x ∈ RN with |x| = r,

U(x) = U(r) =

ˆ +∞

r

'
s1−N

ˆ s

0

tN−1ρ(t)dt

(
ds,

which allows us to show that (6) is satisfied if we consider potentials like

ρ(x) =
1

1 + |x|β , for any β > 2.

In this same way, we will study the existence of bounded solution for the linear Schrödinger
equation

−∆u+ V (x)u = ρ(x) in RN . (LS)

giving a condition of “compatibility” between ρ and V . As we will see in Section 2.2 the
compatibility condition tells us that ρ and the product V U has the property (H) where U is
a bounded solution of (4). For instance, we will show that V and ρ are compatible when the
potential V satisfies (Hα

V ) and ρ satisfies (Hρ) with α ∈ (0, 2]. So, using an argument like the
one exposed in [9], we guarantee the existence of bounded solutions for (LS) that vanishes into
infinity. This result is due to recent work by Cardoso, Cerda, Pereira and Ubilla [11].
Among other classes of Schrödinger equations, they also considered the following scalar equation

)
−∆u + V (x)u = λρ(x)(u + 1)p in RN

u(x) → 0 as |x| → ∞
(Pλ,p)

where 1 < p < (N + 2)/(N − 2). Under the conditions (Hα
V ) and (Hρ), they showed the

existence of a bounded positive solution of Problem (Pλ,p) and also a second solution, via
variational methods, for sufficiently small λ > 0.

In Chapter 3, we will give our main results related to elliptic system (Sλ,µ). In Section
3.1 assuming the conditions (Hα

V ), (Hρ) with α ∈ (0, 2] and using upper and lower solution
technique, we first prove the existence of a bounded positive solution of System (Sλ,µ). We
observe that in [9], as well as in [11], the existence and uniqueness of solution in bounded
domains was crucial to get an increasing sequence of solutions in balls that converge, as the
radius goes to infinity, to the solution of the original problem in whole RN . As far as we know,
the first work for elliptic systems using the ideas of [9], was done by Montenegro [35], where
uniqueness of solution in balls also plays an important role. Since System (Sλ,µ) in bounded
domains does not have this property, we will have to use an alternative argument which involves
minimal solutions.

Let us state our first result.

Theorem 1. Assume that p, q, r, s ≥ 0 and in addition suppose hypotheses (Hρ) and (Hα
V )

hold with α ∈ (0, 2] and α + β > 4. Then, there exists Λ > 0 such that System (Sλ,µ) has at
least one bounded positive solution for every 0 < λ, µ < Λ.

We can also establish a converse for the previous theorem:

Theorem 2. Suppose that V ∈ L∞(RN) is a nonnegative potential and the weights ρi belong to
L∞(RN) with ρi > 0, for i = 1, 2. Suppose also that λ, µ > 0, the powers satisfy 0 < r, s < 1,
pq < (r−1)(s−1) and there exist positive constants b1, b2 such that b1ρ1(x) ≤ ρ2(x) ≤ b2ρ1(x) for
every x ∈ RN . If System (Sλ,µ) admits a bounded positive solution, then, the linear Schrödinger
equation (LS) has a bounded positive solution when ρ = ρ1 as well as when ρ = ρ2.
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Note that when r, s > 1 we can construct a function that is the border between the region
of existence and nonexistence.

Theorem 3. Suppose hypotheses (Hρ) and (Hα
V ) hold with α ∈ (0, 2] and α+ β > 4. Assume

also that r, s > 1 and p, q ≥ 0. Then, there is a positive constant λ∗ and a continuous function
Γ : (0,λ∗) → [0,∞) such that if λ ∈ (0,λ∗) then System (Sλ,µ):

i) has at least one bounded positive solution
if 0 < µ < Γ(λ) ;

ii) has no bounded positive solution if
µ > Γ(λ).

It is worth noting that to obtain existence results of positive bounded solutions of System
(Sλ,µ) it is essential to impose the decay hypotheses on the weight ρ(x). In fact, note that
when ρi(x) = 1 and Vi(x) = 0, System (Sλ,µ) is given by

)
−∆u = λ(u + 1)r(v + 1)p in RN

−∆v = µ(u + 1)q(v + 1)s in RN ,
(7)

thus the (Hρ) property is not satisfied, hence we cannot apply our results. Moreover, there are
no solution of (7) in the following cases (see [36, Theorem 3]):
p, q, r, s ≥ 0, p+ r ≤ q + s and

!
$$$"

$$$#

p+ r ≤ ps if r > 1 or q + s = p+ r

s ≤ ps if r ≤ 1, q = 0 and q + s > p+ r

b >
2

ps − 1
if r ≤ 1, q > 0, q + s > p+ r and pq > (r − 1)(s− 1),

where

b =
2(q + 1− r)

pq − (1− r)(1− s)
and ps =

N

N − 2

is the so called Serrin’s exponent.

On the other hand, the second solution will be obtained employing variational methods.
Here we will consider two types of systems. The first one is the following gradient system

!
$"

$#

−∆u + V (x)u = λρ1(x)(u + 1)r(v + 1)s+1 in RN

−∆v + V (x)v = λρ2(x)(u + 1)r+1(v + 1)s in RN ,

u(x), v(x) → 0 as |x| → ∞
(GSλ)

with r, s > 1, r+s < 2∗−2, ρ1(x) = (r+1)ρ(x) and ρ2(x) = (s+1)ρ(x). To obtain this second
solution we will use the Mountain Pass Theorem [43, Theorem 1.17]. The main result in this
context is the following:
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Theorem 4. Suppose hypotheses (Hρ) and (Hα
V ) hold with α ∈ (0, 2] and α + β > 4,

i) If r, s ≥ 0, then there exists λ∗ > 0 such that the gradient System (GSλ) possesses at
least one bounded positive solution (u1,λ, v1,λ) for all 0 < λ < λ∗ while for r, s > 1 and
λ > λ∗ there are no bounded positive solutions.

ii) If r, s > 1 and r + s < 2∗ − 2, then there exists 0 < λ∗∗ ≤ λ∗ such that the gradient
System (GSλ) possesses a second positive solution of the form (u1,λ + u, v1,λ + v) for all
0 < λ < λ∗∗, where u, v ∈ H1(RN).

The second situation involves the following Hamiltonian system

!
$"

$#

−∆u + V (x)u = λρ(x)(v + 1)p in RN

−∆v + V (x)v = λρ(x)(u + 1)q in RN ,

u(x), v(x) → 0 as |x| → ∞
(HSλ)

for some conditions in the powers p, q > 0. In this case, in order to obtain the existence of a
second solution we will use a linking theorem proved in [31, Theorem 2.1]. The main result
involving the Hamiltonian system is the following:

Theorem 5. Suppose hypotheses (Hρ) and (Hα
V ) hold with α ∈ (0, 2]. Also, suppose also that

α + β > 4 and p, q ≥ 0, then

i) There exists λ∗ > 0 such that Hamiltonian System (HSλ) possesses at least one bounded
positive solution (u1,λ, v1,λ) for all 0 < λ < λ∗ while for p, q > 1 and λ > λ∗ there are no
bounded positive solutions.

ii) If pq < 1, then Hamiltonian System (HSλ) possesses at least one bounded positive solution
(u1,λ, v1,λ) for all λ > 0.

iii) If 1 < pq and p, q < 2∗ − 1, then there exists 0 < λ∗∗ ≤ λ∗ such that Hamiltonian
System (HSλ) possesses a second positive solution of the form (u1,λ + u, v1,λ + v) for all
0 < λ < λ∗∗, where u, v ∈ H1(RN).

This graph illustrates the results obtained

for System (HSλ), which may be compared

to works about Hamiltonian systems

involving the critical hyperbola.
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We would like to point out that in both Theorem 4 and Theorem 5, to show existence of
a second solution we will use an auxiliary problem which allow us to avoid imposing additional
hypotheses of integrabilities on the weights ρi. Here, the potential Vi also plays an important
role in defining adequate spaces in which we will consider the associated energy functional.

In Section 3.4, we give an application of Theorem 1. For this purpose, let us introduce
the following System, which, in part, has motivated our study:

!
$"

$#

−∆z = ρ1(x)z
rwp in RN

−∆w = ρ2(x)z
qws in RN ,

z(x) → c1, w(x) → c2 as |x| → ∞
(8)

where ρi satisfies (Hρ) with β > 2 and c1, c2 > 0. Note that the solutions of this System do
not belong to any Sobolev space, so it is difficult to solve directly. However, as we will see in
the last section, a strategy involving Theorem 1 allows us to find a solution of System (8),
which apparently is the only way to solve it.

To conclude this work, in Chapter 4 we will study the Poisson’s equation in the half space:

−∆u = ρ(x) in RN
+ , (9)

where
RN

+ = {(x1, . . . , xN) ∈ RN : xN > 0},
and ρ ∈ L∞

loc(RN
+ ), ρ(x) ≥ 0 and ρ not identically zero. For this purpose notice that if y =

(y1, . . . , yN) ∈ RN
+ , its reflection in the plane ∂RN

+ , is the point

ỹ = (y1, . . . ,−yN),

then Green’s function in RN
+ is given by

GRN
+
(x, y) = Γ(x− y)− Γ(x− ỹ) for all x ∕= y in RN

+ ,

where Γ is the fundamental solution of the Laplace equation.
Recently, in [1] using some characterization of the Green’s function GRN

+
, show that

v(x) =

ˆ

RN
+

GRN
+
(x, y)ρ(y)dy for x ∈ RN ,

is a solution of )
−∆u = ρ(x) in RN

+

u = 0 on RN\RN
+

(10)

for every ρ ∈ C2+δ
0 (RN

+ ), where δ /∈ N and δ > 0. In addition v ∈ C2+δ(RN
+ ) and is the unique

solution of (10) satisfying

|v(x)| ≤ C
xN

1 + |x|N for x ∈ RN ,

and for some C > 0. This result is even more general since it is still true for the operator
(−∆)s, s > 0, when 2s + δ /∈ N and instead of GRN

+
is considered the Green’s function for

(−∆)s in RN
+ .
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We also refer to the work made by Bachar and Habib [8], in which using some inequalities
for the Green’s function GRN

+
, the class of potentials K (RN

+ ), and the subclass K∞(RN
+ ) which

properly contains the classical Kato class K∞
N (RN

+ ), they have showed that Problem (9) has a
unique solution u ∈ C2+δ(RN

+ ) ∩ C0(RN
+ ) when

ρ(x) ≤ 1

(1 + |x|)µ−γxγ
N

for x ∈ RN
+ ,

with N + 2 ≤ µ+ γ and γ < 2, in addition

1

C

xN

1 + |x|N ≤ u(x) ≤ C
xN

1 + |x|N for x ∈ RN ,

if γ < 1, for some C > 0 (see [8, Theorem 4] and [8, Example 3]).
In our work, it should be noted that the technique used in the article by Brezis and Kamin

cannot be used directly. However, we can use the following fact:

RN
+ =

∞*

n=1

Bn(an),

where, for each n ∈ N, we have denoted by

Bn(an) := {x ∈ RN : |x− an| < n},

and an := (0, . . . , 0, n) ∈ RN
+ . This fact allows us give sufficient and necessary conditions

to obtain existence of a bounded solution of Problem (7) by using a monotonicity argument
involving Green’s functions in the balls Bn(an) and the Green’s function in the half space. So,
we begin by giving the following definition.

Definition. Let ρ ∈ L∞
loc

%
RN

+

&
, ρ(x) ≥ 0 and ρ not identically zero. We say that ρ has the

property (H+) if there exist a bounded solution of:

−∆u = ρ(x) in RN
+ . (P+)

In this way, here our main result is the next:

Theorem 6. Let ρ ∈ L∞
loc

%
RN

+

&
, ρ(x) ≥ 0 and ρ not identically zero. Then ρ satisfies property

(H+) iff
ˆ

RN
+

GRN
+
(x, y)ρ(y)dy ∈ L∞(RN

+ ).

To finish, we will give some applications of above theorem, which shows that Problem (P+)
has bounded positive solution for some ρ and also the nonexistence of bounded solution. For
instance, if we consider

ρ(x) ≤ 1

(1 + |x|)βxγ
N

for x ∈ RN
+ ,

with 0 ≤ γ < 1 and 2 < β + γ. Then we will show that Problem (9) has a solution u ∈
H1(RN

+ ) ∩ L∞(RN
+ ). Furthermore, if we impose β + γ < N + 1, we also show that the solution

vanishes at infinity, that is to say

lim
|x|→∞

u(x) = 0 and lim
xN→0

u(x) = 0.
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Chapter 1

Basic results

1.1 Function spaces

We begin by giving some function spaces that will be presented throughout this work.

Definition 1.1.1. Let Ω ⊂ RN open subset of RN .

• Ck(Ω), k = 1, 2, . . . is the space of functions u : Ω → R that are k times differentiable in
Ω and whose k-th derivates are continuous in Ω.

• C∞(Ω), is the space of functions u : Ω → R that are infinitely many times differentiable
in Ω.

• C∞
0 (Ω), is the subspace of C∞(Ω) consisting of functions with compact support in Ω,

where the support of a (continuous) function u : Ω → R is the closure (in RN) of the set
{x ∈ Ω : u(x) ∕= 0}. Likewise, Ck

0 (Ω) is the subset of Ck(Ω) containing only functions
with compact support.

• Lp(Ω), for p ∈ [1,∞) is the Lebesgue space of measurable functions (Lebesgue measure)

u : Ω → R such that

ˆ

Ω

|u(x)|p < ∞, while L∞(Ω) is the space of measurable functions

such that ess sup
x∈Ω

|u(x)| < ∞, where

ess sup
x∈Ω

|u(x)| = inf{C > 0 : |u(x)| ≤ C a.e. in Ω}.

The norms that make Lp(Ω) Banach spaces are, respectively,

,u,Lp(Ω) =

+
ˆ

Ω

|u(x)|dx
, 1

p

and ,u,∞ = ess sup |u(x)|.

• Lp
loc(Ω), for p ∈ [1,∞) is the space of measurable functions u : Ω → R such that for every

compact set k ⊂ Ω ,u,Lp(K) < ∞.

• H1(Ω) is the Sobolev space defined by

H1(Ω) =

-
u ∈ L2(Ω) :

∂u

∂xi

∈ L2(Ω), i = 1, . . . , N

.
,

9
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where the derivate

Diu = uxi
=

∂u

∂xi

, for i = 1, . . . , N

is in the sense of distributions. It is a Hilbert space, when endowed with the scalar
product given by

〈u, v〉H1(Ω) =

ˆ

Ω

%
∇u∇v + uv

&
dx.

Therefore, the corresponding norm is

,u,H1(Ω) =

+
ˆ

Ω

%
|∇u|2 + u2

&
dx

, 1
2

.

• H1
0 (Ω) is the closure of C∞

0 (Ω) in H1(Ω).

• D1,2(RN), for N ≥ 3, is the space defined as follows:

D1,2(RN) =

-
u ∈ L

2N
N−2 (RN) :

∂u

∂xi

∈ L2(Ω), i = 1, . . . , N

.
.

This space has a Hilbert structure when endowed with the scalar product

〈u, v〉D1,2(RN ) =

ˆ

RN

∇u∇vdx.

So that the corresponding norm is

,u,D1,2(RN ) =

+
ˆ

RN

|∇u|2dx
, 1

2

.

Remark 1.1.1. The space C∞
0 (RN) is dense in D1,2(RN). Moreover H1(RN) ⊂ D1,2(RN), but

there are functions, such as

u(x) =
1

(1 + |x|)N
2

that are in D1,2(RN) but not in L2(RN), and hence, not in H1(RN).

Definition 1.1.2. Let V : RN → R a nonnegative function.

i) The Hilbert space H1
V

%
RN

&
is defined by

H1
V

%
RN

&
=

-
u ∈ H1(RN) :

ˆ

RN

V (x)u2dx < +∞
.

with scalar product and norm given by

〈u, v〉H1
V (RN ) =

ˆ

RN

%
∇u∇v+V (x)uv

&
dx and ,u,H1

V (RN ) =

+
ˆ

RN

%
|∇u|2 + V (x)u2

&
dx

, 1
2

.
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ii) We will denote by E = H1
V (RN)×H1

V (RN) the Hilbert space with the inner product given
by

〈(u, v), (ϕ,φ)〉 =
ˆ

RN

/
∇u∇ϕ+∇v∇φ+ V (x)uϕ+ V (x)vφ

0
dx

and corresponding norm

,(u, v), =

+
ˆ

RN

/
|∇u|2 + v(x)u2 + |∇v|2 + V (x)v2

0
dx

, 1
2

.

Definition 1.1.3. Let Ω ⊂ RN open set, α ∈ (0, 1) and u : Ω → R. We said that u is Hölder
continous with exponent α in Ω if there exist C > 0 such that

|u(x)− u(y)| ≤ C|x− y|α, x, y ∈ Ω.

Definition 1.1.4. Likewise, we said that u is locally Hölder continuous with exponent
α in Ω if u is Hölder continuous with exponent α on campact subset of Ω.

Definition 1.1.5. Let Ω ⊂ RN open set and α ∈ (0, 1).

i) If u : Ω → R is bounded and continuous, we write

||u||C(Ω) := sup
x∈Ω

|u(x)|.

ii) The αth-Hölder seminorm of u : Ω → R is

[u]C0,α(Ω) := sup
x,y∈Ω
x∕=y

-
|u(x)− u(y)|

|x− y|α

.
.

iii) The αth-Hölder norm is

||u||C0,α(Ω) := ||u||C(Ω) + [u]C0,α(Ω).

Definition 1.1.6. Let Ω ⊂ RN open set, α ∈ (0, 1) and k a nonnegative integer. The Hölder
Space Ck,α(Ω) consisting of all functions u ∈ Ck(Ω) for which the norm

||u||Ck,α(Ω) :=
1

|α|≤k

||Du||C(Ω) +
1

|α|=k

[Du]C0,α(Ω)

is finite.

Remark 1.1.2.

i) The space Ck,α(Ω) consists of those functions u that are k-times continuously differentiable
and whose kth-partial derivates are Hölder continuous with exponent α in Ω.

ii) The Hölder Space C
k,α

(Ω) are defined as the subspaces of Ck(Ω) consists of functions
whose kth- order partial derivates are locally Hölder continuous with exponent α in Ω.
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iii) For Simplicity we write

C0,α(Ω) = Cα(Ω), C0,α(Ω) = Cα(Ω).

vi) If α = 1, Cα(Ω) is often called the space of uniformly Lipschitz continuous functions.
If α = 0, Ck,0(Ω) (respectively Ck,0(Ω)) are the usual Ck(Ω) (respectively Ck(Ω)) spaces.
Moreover, for α ∈ [0, 1], Ck,α

0 (Ω) denotes the space of functions in Ck,α(Ω) having compact
support in Ω.

Theorem 1.1.7. Let Ω ⊂ RN open set, α ∈ (0, 1) and k a nonnegative integer. The space of
functions Ck,α(Ω) is a Banach space.

1.2 Embeddings

We recall that a Banach space X is embedded continuously in a Banach space Y , which we
denote by X ↩→ Y , if

1. X ⊆ Y .

2. The canonical injection i : X → Y is a continuous (linear) operator. This means that
there exists a constant C > 0 such that ,i(u),X ≤ C,u,X .

A Banach space X is embedded compactly in a Banach space Y if X is embedded continuously
in Y and the canonical injection i is a compact operator.
The followings results are the cases of the Sobolev and Rellich Embeddings theorems that we
need is this work. First, we deal with functions defined on bounded sets.

Theorem 1.2.1. Let Ω ⊂ RN be an open and bounded subset of RN , with N ≥ 3. Then

H1
0 (Ω) ↩→ Lq(Ω) for every q ∈

2
1,

2N

N − 2

3
.

The embedding is compact if and only if q ∈
2
1,

2N

N − 2

,
.

The number
2N

N − 2
is denoted by 2∗ and is called the critical Sobolev exponent for the

embedding of H1
0 into Lq. The term critical refers to the fact that the embedding of the

preceding theorem fails for q > 2∗.
For functions defined on general, unbounded domains, in view of our applications we limit
ourselves to the case Ω = RN .

Theorem 1.2.2. Let n ≥ 3. Then

• H1(RN) ↩→ Lq(RN) for every q ∈ [2, 2∗].

• D1,2(RN) ↩→ L2∗(RN).

These embeddings are never compact.
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Remark 1.2.1. We point out that the continuity of above embeddings is expressed explicitly
by inequalities if the form

,u,Lq(RN ) ≤ C,u,H1(RN )

where C does not depend on u.

Below, we will give conditions presented in [3] to get a embedding result (see [3, Theorem
5])

Proposition 1.2.3. Let N ≥ 3. Assume the following hypothesis on V and ρ

• V : RN → R is smooth, there exists a,A > 0, α ∈ (0, 2] such that

a

1 + |x|α ≤ V (x) ≤ A, for all x ∈ RN ;

• ρ : RN → R is smooth and there exist k > 0, β ≥ α, such that

0 < ρ(x) ≤ k

1 + |x|β , for all x ∈ RN .

Then, the embedding
H1

V

%
RN

&
↩→ Lq

ρ

%
RN

&

is continuous for 2 ≤ q ≤ 2∗ and compact if 2 < q < 2∗, where we denote by Lq
ρ

%
RN

&
, q > 1,

the weighted Lebesgue space

Lq
ρ

%
RN

&
=

!
"

#u : RN → R : u is measurable and ||u||Lq
ρ(RN ) :=

'
ˆ

RN

ρ(x)|u|qdx
( 1

q

< +∞

4
5

6 .

1.3 Frequently used results

Now, we will give some classic results that we will use throughout this work.

Theorem 1.3.1. (Green’s identity) Let Ω ⊂ RN be open, bounded and smooth.

i) (Gauss-Green theorem). Let v ∈ C1(Ω), then

ˆ

Ω

uxi
dx =

ˆ

∂Ω

νidS for i = 1, . . . , N.

ii) (Integration by parts formula). Let u, v ∈ C1(Ω), then

ˆ

Ω

uxi
vdx = −

ˆ

Ω

uvxi
dx+

ˆ

∂Ω

uvνidS for i = 1, . . . , N.

Green’s formulas:

iii) Let u ∈ C2(Ω), then
ˆ

Ω

∆udx =

ˆ

∂Ω

∂u

∂ν
dS.
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iv) Let u ∈ C2(Ω) and v ∈ C1(Ω). Then

ˆ

Ω

v∆udx =

ˆ

∂Ω

∂u

∂ν
vdS −

ˆ

Ω

∇u ·∇v dx.

v) Let u, v ∈ C2(Ω), then

ˆ

Ω

(u∆v − v∆u) dx =

ˆ

∂Ω

+
u
∂v

∂ν
− v

∂u

∂ν

,
dS,

where along ∂Ω is defined the outward pointing unit normal vector field (ν1, . . . , νN), ν = ν(x)

is the outward normal to ∂Ω at x,
∂u

∂ν
(x) = ∇u(x) · ν(x) and where S is the surface measure

on ∂Ω.

Theorem 1.3.2. (Monotone convergence) Let Ω ⊂ RN be a measurable set Lebesgue, and let
(un) be a sequence increase of measurable nonnegative functions such that for each x ∈ Ω there
exists lim

n→∞
un(x). Then

ˆ

Ω

lim
n→∞

undx = lim
n→∞

ˆ

Ω

undx.

Lemma 1.3.3. (Fatou’s lemma) Let Ω ⊂ RN a measurable set Lebesgue, and let (un) be a
sequence of measurable nonnegative functions such that for each x ∈ Ω there exists lim inf

n→∞
un(x).

Then
ˆ

Ω

lim inf
n→∞

undx ≤ lim inf
n→∞

ˆ

Ω

undx.

Theorem 1.3.4. (Lebesgue’s dominated convergence) Let Ω ⊂ RN be open and let (un) ⊂
L1(Ω) be a sequence such that

1. un(x) → u(x) a.e. in Ω as n → ∞.

2. There exists v ∈ L1(Ω) such that for all n, |un(x)| ≤ v(x) a.e. in Ω.

Then u ∈ L1(Ω) and
ˆ

Ω

udx = lim
n→∞

ˆ

Ω

undx.

Theorem 1.3.5. Let Ω ⊂ RN be open and let (un) ⊂ Lp(Ω), p ∈ [1,∞], be a sequence such that
un → u in Lp(Ω) as n → ∞. Then there exists a subsequence (unk

) and a function v ∈ Lp(Ω)
such that

1. unk
(x) → u(x) a.e. in Ω as n → ∞.

2. For all k, |unk
(x)| ≤ v(x) a.e. in Ω.

Theorem 1.3.6. (Fubini) Let Ω1 and Ω2 be σ-finite measure spaces and suppose u(x, y) is
Ω1 × Ω2 measurable. If either

ˆ

Ω1

+
ˆ

Ω2

|u(x, y)|dy
,
dx < ∞ or

ˆ

Ω2

+
ˆ

Ω1

|u(x, y)|dx
,
dy < ∞
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then
ˆ

Ω1×Ω2

|u(x, y)|dxdy < ∞

and
ˆ

Ω1

+
ˆ

Ω2

|u(x, y)|dy
,
dx =

ˆ

Ω1×Ω2

|u(x, y)|dxdy =

ˆ

Ω2

+
ˆ

Ω1

|u(x, y)|dx
,
dy.

Theorem 1.3.7. (Poincaré inequality) Let Ω ⊂ RN be open and bounded. Then there exists a
constant C > 0, depending only on Ω, such that

ˆ

Ω

u2dx ≤ C

ˆ

Ω

|∇u|2dx for all u ∈ H1
0 (Ω).

Therefore, the quantity

+
ˆ

Ω

|∇u|2dx
, 1

2

is a norm on H1
0 (Ω), equivalent to the standard

one.

Theorem 1.3.8. (Banach-Alaoglu) Let X be a reflexive Banach space. If B ⊂ X is bounded,
then B is relatively compact in the weak topology of X.

In a Banach space X with topological dual X ′, we write un → u when the sequence (un)
converges strongly to u, that is, in the strong topology of X, which means that ,un − u,X → 0
as n → ∞; we write un ⇀ u if un converges weakly to u, i.e. in the weak topology of X, which
means that

f(un) → f(u) as n → ∞ for all f ∈ X ′.

Example 1.3.9. The following chain of arguments is used very frequently, often automatically.
Let Ω ⊂ RN be open and bounded. Suppose that a sequence (un) ⊂ H1

0 (Ω) satisfies

ˆ

Ω

|∇un|2dx ≤ C for all n ∈ N

and for some C > 0 independedt of k. By Theorem 1.3.7, the sequence (un) is bounded in
H1

0 (Ω). The space H1
0 (Ω), being a Hilbert space, is reflexive. Therefore, by Banach-Alaoglu

the Theorem sequence is relatively compact in H1
0 (Ω) endowed with the weak topology. This

means that there exists u ∈ H1
0 (Ω) and a subsequence that, again, call un, such that

un ⇀ u in H1
0 (Ω).

By Theorem 1.2.1, the embedding of H1
0 (Ω) into Lq(Ω) is compact for every q ∈

2
1,

2N

N − 2

,
.

Then we can say that

un → u in Lq(Ω) for every q ∈
2
1,

2N

N − 2

,
.

By Theorem 1.3.5 there exists another subsequence, still denoted un, and there exists v ∈
Lq(Ω), such that

1. un(x) → u(x) a.e. in Ω

2. |un(x)| ≤ v(x) a.e. in Ω for all n ∈ N.
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Remark 1.3.1. This same argument can be used in the whole space RN since the spaces in
which we will work later will be given, and for them, there is an embedding result equivalent
to Theorem 1.2.1.

Next, we give a result which converts N - dimensional integrals into integrals over spheres.

Theorem 1.3.10. (Polar coordinates)

i) Let u : RN → R be continuous and summable. Then

ˆ

RN

u(x)dx =

ˆ ∞

0

+
ˆ

∂B(x0,r)

u(x)dS(x)

,
dr,

for each point x0 ∈ RN

ii) In particular
d

dr

+
ˆ

B(x0,r)

u(x)dx

,
=

ˆ

∂B(x0,r)

u(x)dS(x),

for each r > 0.

Remark 1.3.2. Let R > 0. If there exists a function g : (0, R) → R such that u(x) = g(|x|),
from ii) follows that

ˆ

B(0,R)

u(x)dx =

ˆ R

0

+
ˆ

∂B(0,r)

u(x)dS(x)

,
dr

=

ˆ R

0

g(r)

+
ˆ

∂B(0,r)

dS(x)

,
dr

= NwN

ˆ R

0

g(r)rN−1dr,

where

wN =

ˆ

∂B(0,1)

dS(x).

Thus, we have

ˆ

B(0,R)

u(x)dx = NwN

ˆ R

0

g(r)rN−1dr.

1.4 Differential calculus in Banach spaces

We present a short review of the main definitions and results concerning the differential calculus
for real functionals defined in Banach space. A complete discussion of this topic and more
generalities of differential calculus in normed spaces can be found in [2], and you can also
see [41].

Definition 1.4.1. Let X be a Banach space, U ⊆ X an open set and let I : U → R be a
functional
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• We say that I is Gâteaux differentiable at u ∈ U if there exists A ∈ X ′ such that, for all
v ∈ X,

lim
t→0

I(u+ tv)− I(u)

h
= Av. (1.4.1)

• We also say that I is Fréchet differentiable at u ∈ U if there exists A ∈ X ′ such that

lim
+v+→0

I(u+ v)− I(u)− Av

,v, = 0. (1.4.2)

Remark 1.4.1.

1. If I is Gâteaux differentiable at u, there is only one linear functional A ∈ X ′ satisfying
(1.4.1). It is called the Gâteaux differential of I at u and is denoted by I ′G(u).

2. If the functional is Gâteaux differentiable at every u ∈ U , we say that I is Gâteaux
differentiable on U .

3. The map I ′G : U → X ′ that sends u ∈ U to I ′G(u) ∈ X ′ is called the Gâteaux derivate of
I.

4. If I is Fréchet differentiable at u, the unique element of X ′such that (1.4.2) holds is
called the (Fréchet) differential of I at u and is denoted by I ′(u).

5. If the functional I is differentiable at every u ∈ U , we say that I is differentiable on U .

6. The map I ′ : U → X ′ that sends u ∈ U to I ′(u) ∈ X ′ is called the (Fréchet) derivate of I.

7. If the derivate I ′ is continuous from U to X ′ we say that I is of class C1 on U and we
write I ∈ C(U).

Definition 1.4.2. Let (H, 〈, 〉) be a Hilbert space, U ⊆ H an open set, and let R : H → H be
the Riesz isomorphism. Assume that the functional I :→ R is differentiable at u. The element
RI ′(u) ∈ H is called the gradient of I at u and is denoted by ∇I(u); therefore

I ′(u)v = 〈∇I(u), v〉 for every v ∈ H.

We have the following classic result (see [2]).

Lemma 1.4.3. Assume that U ⊆ X is an open set, that I is Gâteaux differentiable on U and
I ′G is continuous at u ∈ U . Then I is also differentiable at u, and I ′G(u) = I ′(u).

We conclude by giving the definitions of critical points and critical levels that will be one
of the main themes in studied in this work.

Definition 1.4.4. Let X a Banach space, U ⊆ X is an open set and assume that I : U → R
is differentiable.

• A critical point of I is a point u ∈ U such that I ′(u) = 0.

• If I ′(u) = 0 at I(u) = c, we say that u is a critical point for I at level c and c is a critical
value of I.
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• If for some c ∈ R the set I−1(c) ⊂ X contains at least a critical point, we sat that c is a
critical level for I.

Remark 1.4.2.

1. As I ′(u) is an element of the dual space X ′, u is a critical point of I if I ′(u)v = 0 for all
v ∈ X.

2. The equation I ′(u) = 0 is called the Euler-Lagrange equation associated to the functional
I.

Next, we will give an example which will be used automatically in this work. For this
purpose, we will give the definition of the Carathéodory condition and a Nemytskii operator.

Definition 1.4.5. Let Ω ⊂ RN . We say that f : Ω × R → R is a Carathéodory function if
satisfies

• For all t ∈ R the function x 1→ f(x, t) is measurable.

• For almost all x ∈ Ω the function t 1→ f(x, t) is continuous.

Remark 1.4.3. It is clear that if f : Ω×R → R is a Carathéodory function, then x 1→ g(x, u(x))
is measurable for every measurable u : Ω → R.

Proposition 1.4.6. Let Ω ⊂ RN be open. Let f : Ω × R → R a Carathéodory function such
that for some p, q ≥ 1, c > 0 and a ∈ Lq(Ω)

|f(x, t)| ≤ a(x) + c|t|
p
q .

Then, the Nemytskii operator g : Lp(Ω) → Lq(Ω) defined by

f(u)x = f(x, u(x))

is continuous.

Proof. Since

|f(x, u(x))|q ≤
777a(x) + c|u(x)|

p
q

777
q

≤ 2q−1
/
|a(x)|q + c|u(x)p|

0
∈ L1(Ω),

we have f(x, u(x)) ∈ Lq(Ω). Let uk → u in Lp(Ω). Now, we will show that g(uk) → g(u)
in Lq(Ω). In fact, let (un) a subsequence of (uk). Then, from Theorem 1.3.5 there exists a
subsequence, still denoted un, and there exists v ∈ Lq(Ω), such that

1. un(x) → u(x) a.e. in Ω

2. |un(x)| ≤ v(x) a.e. in Ω for all n ∈ N.

Thus f(x, un(x)) → f(x, u(x)) a.e. in Ω. Since

|f(x, un(x))|q ≤ 2q−1
/
|a(x)|q + c|v(x)p|

0
∈ L1(Ω),

we see that |f(x, un(x)) − f(x, u(x))| ∈ Lq(Ω). Therefore, by dominated convergence we have
g(un) → g(u) in Lq(Ω) and thus g(uk) → g(u) in Lq(Ω).
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Example 1.4.7. Let Ω ⊂ RN be open. Suppose p and q are conjugate exponents, 1 < p < ∞.
Assume f : Ω× R → R is a Carathéodory function, there exist c > 0 and a ∈ Lq(Ω) such that

|f(x, t)| ≤ a(x) + c|t|
p
q .

Define F : Ω× R → R by

F (x, t) =

ˆ t

0

f(x, t)dt.

Then, the functional ψ : Lp(Ω) → R defined as

ψ(u) =

ˆ

Ω

F (x, u(x))dx

is of class C1(Lp(Ω),R) and

I ′(u)v =

ˆ

Ω

f(x, u(x))v(x)dx.

Proof. Let u, v ∈ Lp(Ω), x ∈ Ω and t ∈ [0, 1]. By the mean value theorem there is ξ ∈ (0, 1)
such that

F (x, u(x) + tv(x))− F (x, u(x)) = f(x, u(x) + ξv(x))v(x).

Since

|f(x, u(x) + ξv(x))|q ≤
/
a(x) + c|u(x) + v(x)|

p
q

0q

≤ 2q−1
/
a(x)q + |u(x)p|+ c|v(x)p|

0
∈ L1(Ω),

by Holder inequality, we have f(x, u(x) + ξv(x))v(x) ∈ L1(Ω). Therefore from dominated
convergence we see that

lim
t→0

ˆ

Ω

F (x, u(x) + tv(x))− F (x, u(x))

t
dx =

ˆ

Ω

f(x, u(x))v(x)dx.

This shows that ψ is Gâteaux differentiable. Moreover, Proposition 1.4.6 say that the map
u 1→ f(x, u(x)) is continuous from Lp(Ω) to Lq(Ω), then by Lemma 1.4.3 we conclude that
ψ is differentiable.

1.5 Lower and upper solutions

In this section the classic result of existence of solution of the problem will be given:

-
−∆u = f(x, u) in Ω

u = 0 on ∂Ω
(1.5.1)

between an upper and a lower solution, where Ω is a smooth bounded domain in RN , N ≥ 3,
u : Ω → R and f : Ω× R2 → R are given functions.

We begin by introducing the definition of an upper solution and a lower solution of Problem
(1.5.1).
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Definition 1.5.1. Let Ω a smooth bounded domain in RN , N ≥ 3.

i) A function u ∈ C2(Ω) ∩ C(Ω) is called classic solution (upper solution, lower solution)
of Problem (1.5.1), if:

- −∆u = ( ≥ , ≤ ) f(x, u) in Ω

u = ( ≥ , ≤ ) 0 on ∂Ω.

ii) A function u ∈ H1(Ω) is calledweak solution (weak upper solution, weak lower solution)
of Problem (1.5.1), if:

!
"

#

ˆ

Ω

∇u∇ϕdx = ( ≥ , ≤ )

ˆ

Ω

f(x, u)ϕdx in Ω

u = ( ≥ , ≤ ) 0 on ∂Ω,

for all ϕ ∈ C∞
0 (Ω).

Remark 1.5.1. If u ∈ C2(Ω)∩ (Ω) is a weak upper solution (respectively, weak lower solution)
of (1.5.1), then

−∆u ≥ f(x, u) (resp.−∆u ≤ f(x, u)) in Ω,

that is, u is a usual upper solution (resp. lower solution) of (1.5.1).

The following result gives (see [30]) us the existence of solution of Problem (1.5.1), proving
that there is an upper and a lower solution. More precisely:

Theorem 1.5.2. Suppose that f ∈ C(Ω× R) and there exist u, u ∈ H1(Ω) ∩ C(Ω) weak lower
and weak upper solutions (resp.) of Problem (1.5.1) such that u(x) ≤ u(x) for all x ∈ Ω.
Then, the Problem (1.5.1) has at least a weak solution u ∈ H1

0 (Ω) such that

u(x) ≤ u(x) ≤ u(x) in Ω.

Since here we are working with weak solutions, it is necessary to give the following result,
which is a weak maximum principle.

Lemma 1.5.3. Let Ω ⊂ RN be a bounded domain and let m ≥ 0 be a constant. If u is a
continuous function in Ω which is nonnegative on ∂Ω and satisfies

ˆ

Ω

(u∆ϕ−muϕ)dx ≤ 0, (1.5.2)

for all ϕ ∈ C∞
0 (Ω) with ϕ ≥ 0. Then u ≥ 0 in Ω.

Proof. Suppose by contradiction that min
x∈Ω

u(x) < 0. There exists an x0 ∈ Ω such that

u(x0) = min
x∈Ω

u(x).

As u is continuous, there is B(x0, r) ⊂ Ω such that u(x) < 0 in B(x0, r). Let B = B(x0, r/2).
Choose a nonnegative ϕ ∈ C∞

0 (RN) such that
ˆ

RN

ϕdx = 1 and put ϕε(x) =
1

εN
ϕ
/x
ε

0
for ε > 0.
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Define

uε(x) =

ˆ

Ω

u(y)ϕε(x− y)dy, x ∈ B for ε > 0.

Then uε → u uniformly on B as ε → 0, and so, for any η > 0 there is an ε0 > 0 such that
uε − u ≥ −η on ∂B for 0 < ε < ε0. Take a harmonic function h in B satisfying h = u on ∂B,
and using (1.5.2) we have

∆(uε(x)− h(x)) = ∆uε(x) =

ˆ

Ω

u(y)∆ϕε(x− y)dy ≤ m

ˆ

Ω

u(y)ϕε(x− y)dy ≤ 0 in B.

And for ε > 0 enough small uε(x)−h(x) = 0 on ∂B. Then, by the weak maximum principle we
have uε − h ≥ −η in B and letting ε → 0, η → 0, we obtain u ≥ h in B. From this inequality
it follows that

u(x0) ≥ h(x0) ≥ min
x∈∂B

h(x) = min
x∈∂B

u(x) ≥ min
x∈Ω

= u(x0).

Therefore, min
x∈∂B

h(x) = h(x0). Then by the harmonicity of h and strong maximum principle we

have
u ≡ u(x0) on ∂B.

Since r > 0 can be chosen arbitrarily small, we conclude that u ≡ u(x0) near x0, and this
implies that the set M = {x ∈ Ω : u(x) = u(x0)} is open in Ω. Obviously, M is closed, so that
we must have M = Ω, that is, u ≡ u(x0) in Ω. This, however, contradicts the fact that u ≥ 0
on ∂Ω, and the proof is complete.

1.6 Elliptic systems

In this section we present the type of systems of equations that we will work on in the following
sections. Next we will give its properties and basic definitions. Consider the following system

!
$"

$#

−∆u + V1(x)u = f(x, u, v) in Ω

−∆v + V2(x)v = g(x, u, v) in Ω

u = v = 0 on ∂Ω

(1.6.1)

where Ω is a smooth bounded domain in RN , N ≥ 3, u, v, V1, V2 : Ω → R and f, g : Ω×R2 → R
are given functions.

Definition 1.6.1. By a solution (upper solution, lower solution) of System (1.6.1) we
mean a couple (u, v) in (H1(Ω))2 satisfying

!
$"

$#

−∆u + V1(x)u = ( ≥ , ≤ ) f(x, u, v) in Ω

−∆v + V2(x)v = ( ≥ , ≤ ) g(x, u, v) in Ω

u = ( ≥ , ≤ ) 0 on ∂Ω

almost everywhere in x.
We say that (u, v) is nonnegative (positive) in Ω if each coordinate is.

The following general result due to Montenegro [35] establishes the existence of a solution
for a systems like (1.6.1), provided an upper solution and a lower solution exist.
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Lemma 1.6.2. [35, Lemma 2.1] Let p0 ≥ N and X := {(u, v) ∈ C(Ω)2 : u = v = 0 on ∂Ω} en-
dowed with the norm ,(u, v),X = ,u,C(Ω)+,u,C(Ω). Assume that there are a nonnegative lower
solution (u, v) and a nonnegative upper solution (u, v) of the System (1.6.1) satisfying u ≤ u
and v ≤ v in Ω. Set M = max{,(u, v),X , ,(u, v),X}. Let f and g be nonnegative Carathéodory
functions such that f(x, t1, s1) ≤ f(x, t2, s2) and g(x, t1, s1) ≤ g(x, t2, s2) for every x ∈ Ω,
0 ≤ t1 ≤ t2 ≤ M , 0 ≤ s1 ≤ s2 ≤ M and sup{f(·, t, s) : t, s ∈ [0,M ]}, sup{g(·, t, s) : t, s ∈
[0,M ]} are in Lp0(Ω). Then, System (1.6.1) admits a solution (u, v) verifying u ≤ u ≤ u
and v ≤ v ≤ v in Ω.

Next, we will give the definition of the types of variational systems that we will work on
throughout this work.

Definition 1.6.3. The system

- −∆u + V (x)u = f(x, u, v) in RN

−∆v + V (x)v = g(x, u, v) in RN
(1.6.2)

is variational if either one of the following conditions hold:

a) There exists a differentiable function G : RN+2 → R such that

∂G

∂u
= f and

∂G

∂v
= g.

In this case, the system is said to be gradient.

b) There exists a differentiable function F : RN+2 → R such that

∂F

∂u
= g and

∂F

∂v
= f.

In this case, the system is said to be Hamiltonian.

The variational terminology comes from the fact that in both case, System (1.6.2) has a
functional naturally associated with the system. In fact, if we work with functions (u, v) ∈ H,
the functional associated with the gradient system is

I(u, v) =
1

2

ˆ

RN

/
|∇u|2 + V (x)u2 + |∇v|2 + V (x)v2

0
dx−

ˆ

RN

G(x, u, v)dx,

while the one associated to a Hamiltonian system is

J(u, v) =

ˆ

RN

/
∇u∇v + V (x)uv

0
dx−

ˆ

RN

F (x, u, v)dx.

These two types of variational systems can be treated using the critical point theory, since
the critical points of their functionals are solutions of the System (1.6.2). There are several
methods to tackle this question. The most successful one in our framework seems to be the
Mountain Pass Theorem of Ambrosetti and Rabinowitz (see [27] or [43, Theorem 1.17]) and
the linking theorem ; here we follow [24, Theorem 2.1].
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Definition 1.6.4. Let (E, , · ,) be a real Hilbert space, I ∈ C1(E,R) and c ∈ R. We call I
satisfies a Palais-Smale condition level c if every sequence (un) ⊂ E such that

I(un)−→
n→∞

c and I ′(un)−→
n→∞

0

has a strongly convergent subsequence in E.

Theorem 1.6.5. (Mountain Pass Theorem)
Let (E, , · ,) be a real Hilbert space, and I : E → R a functional C1 satisfying the Palais-Smale
condition. Asume

M1) I(0) = 0.

M2) There exists a constants r, a > 0 such that

I(u) ≥ a if ,u, = r.

M3) There exists v ∈ E with

I(v) ≤ 0 if ,v, > r.

Define
Γ := {g ∈ C([0, 1];E) : g(0) = 0, g(1) = v}.

Then c = inf
g∈Γ

max
0≤t≤1

I(g(t)) is a critical value of I, greater than or equal to a.

Now, we give the linking result. For this purpose we begin by defining what is a cerami
sequence.

Definition 1.6.6. Let (E, , · ,) be a real Hilbert space, J ∈ C1(E,R) and c ∈ R. We call a
sequence (un) ⊂ E a Cerami sequence at level c and denote (C)c for short, if

J(un)−→
n→∞

c and (1 + ,un,)J ′(un)−→
n→∞

0

and we say that J satisfies the Cerami condition if every (C)c sequence has a strongly convergent
subsequence in E.

Before proceeding, we recall some terminology introduced in [24, 29]. Let E− be a closed
subspace of a separable Hilbert space E with norm , · ,E and let E+ := (E−)⊥. For u ∈ E we
shall write u = u+ + u−, where u± ∈ E±. On H we define a new norm

,u,τ := max

)
,u+,E,

∞1

k=1

1

2k
|〈u−, ek〉|

8
,

where {ek} is a total orthonormal sequence in E−. The topology induced by , · ,τ is called the
τ -topology. We recall from [29] that a homotopy h = I−g : A× [0, 1] → E is called admissible,
with A ⊂ E, if

i) h is τ -continuous, which means, h(un, sn) → h(s, u) in τ -topology as n → ∞ whenever
un → u in τ -topology and sn → s as n → ∞;
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ii) g is τ -locally finite-dimensional, i.e., for each (u, s) ∈ A × [0, 1] there is a neighborhood
U of (u, s) in the product topology of (E, τ) and [0, 1] such that g(U ∩ (A × [0, 1])) is
contained in a finite dimensional subspace of E.

Notice that admissible homotopies are continuous in the strong topology. Also, if {um} is
a bounded sequence in E, then um → u in the τ -topology if, and only if, um ⇀ u in E− and
um → u in E+.

The next proposition was proved in [24] and it is a generalization for (C)c sequences of [29,
Theorem 3.4], in which a similar result was proved for Palais-Smale sequences.

Theorem 1.6.7. (Linking Theorem)
Let E = E+⊕E− be a separable real Hilbert space with E− orthogonal to E+ and I ∈ C1(E,R).
Suppose

i) J(z) =
1

2
(,z+,2 − ,z−,2) − I(z), where I ∈ C1(E,R) is bounded from below, weakly

sequentially lower semicontinuous and I ′ is weakly sequentially continuous.

ii) There exist z0 ∈ E+ \ {0}, a > 0 and R > r > 0 such that J |Nr ≥ α and J |∂MR,z0
≤ 0.

Then, there exists a Cerami sequence for J at level c := inf
h∈Γ

sup
u∈MR,z0

J(h(u, 1)) where

Γ :=
9
h ∈ C(M) ; h is admissible, h(u, 0) = u and J(h(u, s)) ≤ max{Φ(u),−1}, ∀ s ∈ [0, 1]

:

with

MR,z0 = {z = z− + tz0 : ,z, ≤ R, t ≥ 0}, Nr = {z ∈ E+ : ,z, = r}, M = MR,z0 × [0, 1]

Moreover c ≥ a.



Chapter 2

A scalar problem

2.1 The classic problem of Brezis-Kamin

This section will develop the main results obtained in the celebrated paper of Brezis and
Kamin [9].
The objective is to give the necessary and sufficient conditions which guarantee the existence
of a bounded positive solution of the problem

−∆u = ρ(x)uα in RN , N ≥ 3 (2.1.1)

where 0 < α < 1, ρ ∈ L∞
loc(RN), ρ(x) ≥ 0 and ρ not identically zero.

It is important noting that to obtain existence results of positive bounded solutions of
Problem (2.1.1) is essential to impose the decay hypotheses on the weight ρ(x). In fact, note
that when ρ(x) = 1, Problem (2.1.1) is given by

−∆u = uα in RN

and through the classic Liouville theorems, for 0 < α < 2∗ − 1, Problem (2.1.1) has only a
nonnegative C2 solution given by u ≡ 0. This result was proved by Gidas-Spruck [24] in the
case 1 < α < 2∗ − 1. Moreover a proof using the method of moving parallel planes was given
by Chen-Li [12], and it is valid in the whole range of α.
Therefore, the goal of this section is given the class of functions ρ so that Problem (2.1.1) has
a bounded positive solution. For this purpose, we begin to talk about the problem

−∆u = ρ(x) in Ω

where Ω is a domain in RN . From classical theory, if ρ ∈ C2(Ω), we know that the Newtonian
potential of ρ, w defined on RN by

w(x) =

ˆ

Ω

Γ(x− y)ρ(y)dy,

where Γ is the fundamental solution of the Laplace equation, given by

Γ(x) :=

!
$$"

$$#

−
1

2π
ln |x| if N = 2

1

N(N − 2)wN

1

|x|N−2
if N ≥ 3,

25
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defined for x ∈ RN , x ∕= 0, belongs to C2(Ω) and satisfies −∆w = ρ in Ω (see [30]). However,
if f is merely continuous, then w is not necessarily twice differentiable. In fact, take 0 < R < 1
and Ω = BR, where we have denoted by BR = {x ∈ RN : |x| ≤ R}. For x = (x1, . . . , xN) ∈ BR

we define the functions

f(x) =

!
$"

$#

x2
1 − x2

2

2|x|2

'
N + 2

(− ln |x|) 1
2

+
1

2(− ln |x|) 3
2

(
if |x| ∕= 0

0 if |x| = 0

and

g(x) = (− lnR)
1
2 (x2

2 − x2
1).

Then

u(x) =

)
(x2

2 − x2
1)(− ln |x|) 1

2 if |x| ∕= 0

0 if |x| = 0

belongs to C(BR) ∩ C∞(BR\{0}) and satisfies

-
−∆u = f(x) in BR\{0}

u = g on ∂BR,
(2.1.2)

but u is not in C2(BR), since

ux1x1(x) = −2(− ln |x|) 1
2 +

2x2
1

|x|2(− ln |x|) 1
2

+
x2
2 − x2

1

2|x|2

;
1

(− ln |x|) 1
2

+
−1 +

2x2
1

|x2|

,
− x2

1

|x|2(− ln |x|) 3
2

<

implies that ux1x1(x) → ∞ as |x| → 0. However, it is possible that there is another solution
of the equation that was of class C2; to show that this does not happen, we will prove the
following result, which is of interest in itself, since it gives a criterion to remove the singularity
of harmonic functions.

Lemma 2.1.1. Let R > 0 and u be a harmonic function in BR\{0} that satisfies

0 = lim
|x|→0

!
"

#

u(x)

ln |x| if N = 2

u(x)|x|N−2 if N ≥ 3.

Then u can be defined at 0 so that it is smooth and harmonic in BR.

Proof. For simplicity, let us only consider the case N ≥ 3. Since u is continuous on ∂BR, there
exists v ∈ C2(BR) unique solution of Dirichlet problem

-
−∆v = 0 in BR

v = u on ∂BR.

Using the continuity of v at 0 and the hypothesis, we have

lim
|x|→0

w(x)|x|N−2 = 0,
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where w(x) := u(x) − v(x). Moreover w is harmonic in BR\{0} and w(x) = 0 on ∂BR. For
each ε > 0, set

w+ =
ε

|x|N−2
+ w(x) and w− =

ε

|x|N−2
− w(x),

and choosing δ > 0 small enough we have w+(x) > 0 and w−(x) > 0 on |x| = δ. Applying the
principle of the maximum to the region δ ≤ |x| ≤ R, follows that

w+(x) > 0 and w−(x) > 0 in δ ≤ |x| ≤ R.

In conclusion:
|w(x)| ≤ ε

|x|N−2
in δ ≤ |x| ≤ R,

for each ε > 0, from where, w(x) ≡ 0 if x ∕= 0, since we can make the same argument with ρ as
close to zero as necessary to encompass each point x ∕= 0. Therefore u is equal to the harmonic
function v in BR\{0}, from where defining u(0) = v(0) the proof is conclude.

Getting back to Problem (2.1.2), assume there exists v ∈ C2(BR) solution of (2.1.2). Then
w(x) = u(x)− v(x) is harmonic in BR\{0}, continue in BR and satisfies:

lim
|x|→0

w(x)|x|N−2 = 0.

Then, from Lemma 2.1.1 w could be extended to a harmonic function in BR. Thus, w ∈
C2(BR) and therefore u must also belong to C2(BR). Hence, lim|x|→0 ux1x1 exists and we arrive
at a contradiction.

Fortunately, if we hope obtain a C2 solution, we must instead consider the Hölder Space
C0,γ(Ω) in place of C(Ω). In fact, from [25, Lemma 4.2] if ρ is bounded and locally Hölder
continuous with exponent 0 < γ ≤ 1 in Ω , then the Newtonian potential of ρ, w, belongs
to C2(Ω) and satisfies −∆w = ρ in Ω. On the other hand, if ρ ∈ Lp(Ω), 1 < p < ∞, then
from [25, Theorem 9.9] w is a strong solution, that is to say, w ∈ W 2,p(Ω) satisfies :

−∆u = ρ(x) a.e. in Ω.

Thus, since our approach considers ρ ∈ L∞
loc(RN), we only expect to get solutions with regularly

C1,γ .
Now, since in the case Ω is the ball BR, from [30, Theorem 12] we have an explicit formula

for the solution of the problem:
-

−∆u = ρ(x) in BR

u = g on ∂BR,

for given continuous functions ρ, g given by

u(x) =

ˆ

BR

GR(x, y)ρ(y)dy −
ˆ

∂BR

K(x, y)g(y)dS(y) ∀x ∈ BR,

where K is the Poisson’s Kernel (see [25, 2.29]) and GR is the Green’s function in BR given by

GR(x, y) =

!
$"

$#
Γ(x − y) − Γ

+ |y|
R

7777x −
R2

|y|2
y

7777

,
if y ∕= 0

Γ(x) − Γ(R) if y = 0,

for all x ∕= y in BR, we will work with this representation based on the following properties of
the Green’s function in BR.
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Lemma 2.1.2. The Green’s function in BR satisfies:

i) If R < R′, then GR(x, y) < GR′(x, y) for all x ∕= y in BR, that is said that the Green’s
function in BR is increasing with R > 0.

ii) GR(x, y) → Γ(x− y) as R → ∞ for all x ∕= y in RN .

The following result gives us a representation of the solutions of the Dirichlet problem:

-
−∆u = ρ(x) in BR

u = 0 on ∂BR.
(2.1.3)

Lemma 2.1.3. Let ρ ∈ L∞
loc(RN), ρ(x) ≥ 0 and ρ not identically zero. Then for each R > 0

the Dirichlet problem (2.1.3) has only one weak solution uR ∈ H1
0 (BR), which is increasing

with R. In addition

uR(x) =

ˆ

BR

GR(x, y)ρ(y)dy.

Proof. From [8] (see also [30]) Problem (2.1.3) has only one weak solution uR obtained by

min
u∈H1

0 (BR)

-
1

2

ˆ

BR

|∇u|2dx−
ˆ

BR

ρ(x)udx

.
,

and from [25, Theorem 8.8] follows that uR ∈ C1,γ(BR), for some 0 < γ < 1. Since ρ(x) is not
identically zero we also have uR ≥ 0 in BR and uR ∕= 0, even more, from [25, Theorem 8.19] (
strong maximum principle for weak solutions), we have uR > 0 in BR.

Now, we claim that uR is increasing with R, that is, if R′ > R then uR′ ≥ uR in BR. In
fact, let ϕ ∈ C∞

0 (BR) with ϕ ≥ 0. Then, from Green’s identities

−
ˆ

BR

uR′∆ϕdx ≥ −
ˆ

BR′

uR′∆ϕdx =

ˆ

BR′

∇uR′∇ϕdx =

ˆ

BR′

ρ(x)ϕ(x)dx

≥
ˆ

BR

ρ(x)ϕ(x)dx =

ˆ

BR

∇uR∇ϕdx

= −
ˆ

BR

uR∆ϕdx,

from where
ˆ

BR

(uR′ − uR)∆ϕdx ≤ 0.

Therefore, the maximum principle implies that uR′ ≥ uR in BR (see Lemma 1.5.3).
Next, we will show that is uR is given by

uR(x) =

ˆ

BR

GR(x, y)ρ(y)dy.
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First of all, note that uR is well defined, since if k > 0 is such that BR ⊂ B(x, k), then
ˆ

BR

GR(x, y)ρ(y)dy ≤
ˆ

BR

Γ(x, y)ρ(y)dy

≤
,ρ,L∞(B(x,k))

N(N − 2)wN

ˆ

B(x,k)

1

|x− y|N−2
dy

=
,ρ,L∞(B(x,k))

N(N − 2)wN

ˆ

B(0,k)

1

|y|N−2
dy

=
,ρ,L∞(B(x,k))

N(N − 2)wN

NwN

ˆ k

0

rN−1

rN−2
dr

=
k2

2(N − 2)
,ρ,L∞(B(x,k)).

On the other hand, for R > 0 fix y ∈ BR and for every ε > 0 we define Vε := BR\B(y, ε).
Then, from monotone convergence theorem follows that

lim
ε→0

ˆ

Vε

Γ(x− y)∆ϕ(x)dx =

ˆ

BR

Γ(x− y)∆ϕ(x)dx.

Now we will estimate the previous integral of the left side. For this let ϕ ∈ C∞
0 (BR) with ϕ ≥ 0.

Then using Green’s identities
ˆ

Vε

Γ(x− y)∆ϕ(x)dx =

ˆ

Vε

%
Γ(x− y)∆ϕ(x)−∆Γ(x− y)ϕ(x)

&
dx

=

ˆ

∂Vε

+
Γ(x− y)

∂ϕ

∂ν
(x)− ϕ(x)

∂Γ

∂ν
(x− y)

,
dS(x)

=

ˆ

∂B(y,ε)

+
Γ(x− y)

∂ϕ

∂ν
(x)− ϕ(x)

∂Γ

∂ν
(x− y)

,
dS(x).

Again from Green’s identities we have
ˆ

∂B(y,ε)

Γ(x− y)
∂ϕ

∂ν
(x)dS(x) =

1

N(N − 2)wNεN−2

ˆ

∂B(y,ε)

∂ϕ

∂ν
(x)dS(x)

=
1

N(N − 2)wNεN−2

ˆ

B(y,ε)

∆ϕdx

≤ 1

N(N − 2)wNεN−2
max
BR

|∆ϕ|wNε
N

=
ε2

N(N − 2)
max
BR

|∆ϕ| → 0 as ε → 0.

Since, for every x ∈ ∂B(y, ε) we have

∂Γ

∂ν
(x− y) = ∇Γ(x− y) · ν =

'
−1

NwN

N1

i=1

xi − yi
|x− y|N

(
·
+
−xi − yi
|x− y|

,
=

1

NwNεN−1
.
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we obtain
ˆ

∂B(y,ε)

ϕ(x)
∂Γ

∂ν
(x− y)dS(x) =

1

NwNεN−1

ˆ

∂B(y,ε)

ϕ(x)dS(x)

=
1

NwNεN−1

ˆ

∂B(y,ε)

%
ϕ(x)− ϕ(y)

&
dS(x) + ϕ(y)

≤ max
|x−y|=ε

|ϕ(y)− ϕ(x)|+ ϕ(y)

→ ϕ(y) as ε → 0.

In conclusion:

−ϕ(y) =

ˆ

BR

Γ(x− y)∆ϕ(x)dx.

Then using Green’s identities and Fubini’s theorem we get:
ˆ

BR

∇uR(x)∇ϕ(x)dx = −
ˆ

BR

uR(x)∆ϕ(x)dx

= −
ˆ

BR

+
ˆ

BR

GR(x, y)ρ(y)dy

,
∆ϕ(x)dx

= −
ˆ

BR

ρ(y)

+
ˆ

BR

GR(x, y)∆ϕ(x)dx

,
dy

= −
ˆ

BR

ρ(y)

+
ˆ

BR

Γ(x− y)∆ϕ(x)dx

,
dy

=

ˆ

BR

ρ(y)ϕ(y)dy,

where we obtain that uR is weak solution of Problem (2.1.3).

After having finished referring to the equation in bounded domains and due to our approach,
we will give some facts about of the Poisson’s equation:

−∆u = ρ(x) in RN . (Pe)

In what follows, N will be an integer greater than or equal to 3.
The following result says that the Newtonian potential of ρ, in whole space, belongs to C1(RN).

Lemma 2.1.4. Let ρ ∈ L∞
loc(RN), ρ(x) ≥ 0 and ρ not identically zero. Assume that the

Newtonian potential of ρ, given by

w(x) =

ˆ

RN

Γ(x− y)ρ(y)dy,

belongs to L∞%
RN

&
. Then w ∈ C1(RN) and for any x ∈ RN

Diw(x) =

ˆ

RN

DiΓ(x− y)ρ(y)dy for all i = 1, . . . , N.
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Proof. For each i = 1, . . . , N , we define

v(x) =

ˆ

RN

DiΓ(x− y)ρ(y)dy.

Since

7777
ˆ

RN

DiΓ(x− y)ρ(y)dy

7777 =
7777
ˆ

RN\B(x,1)

DiΓ(x− y)ρ(y)dy +

ˆ

B(x,1)

DiΓ(x− y)ρ(y)dy

7777

≤ 1

NwN

ˆ

RN\B(x,1)

ρ(y)

|x− y|N−1
dy +

,ρ,L∞(B(x,1))

NwN

ˆ

B(x,1)

1

|x− y|N−1
dy

≤ 1

NwN

ˆ

RN\B(x,1)

ρ(y)

|x− y|N−2
dy +

,ρ,L∞(B(x,1))

NwN

ˆ

B(x,1)

1

|x− y|N−1
dy

≤ (N − 2)w(x) +
,ρ,L∞(B(x,1))

NwN

ˆ

B(0,1)

1

|y|N−1
dy

= (N − 2)w(x) + ,ρ,L∞(B(x,1)),

follows that vi is well defined. We now show that vi = Diwi for each i = 1, . . . , N . To do so,
for ε > 0, let ηε(x, y) = η(|x − y|/ε) where η = η(|x|) is some nonnegative radial function in
C1(RN) with 0 ≤ η ≤ 1, 0 ≤ η′ ≤ 2 and

η(|x|) :=
-

0 if |x| ≤ 1,
1 if |x| ≥ 2.

Define for ε > 0

wε(x) =

ˆ

RN

ηε(x, y)Γ(x− y)ρ(y)dy.

Clearly, wε ∈ C1(RN) and

|w(x)− wε(x)| =
7777
ˆ

RN

Γ(x− y)ρ(y)dy −
ˆ

RN

ηε(x, y)Γ(x− y)ρ(y)dy.

7777

=

7777
ˆ

B(x,2ε)

(1− ηε(x, y))Γ(x− y)ρ(y)dy

7777

≤
,ρ,L∞(B(x,1))

N(N − 2)wN

ˆ

B(x,2ε)

1

|x− y|N−2
dy

=
,ρ,L∞(B(x,1))

N(N − 2)wN

ˆ

B(0,2ε)

1

|y|N−2
dy

=
2ε2

(N − 2)
,ρ,L∞(B(x,1)).
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In the similar way and considering η′ ≡ 0 on RN\B2ε, we have

|v(x)−Diwε(x)| =
7777
ˆ

RN

DiΓ(x− y)ρ(y)dy −
ˆ

RN

Di

%
ηε(x, y)Γ(x− y)

&
ρ(y)dy.

7777

=

7777
ˆ

RN

+
(1− ηε(x, y))DiΓ(x− y)− η′ε(x, y)

x− y

ε|x− y|Γ(x− y)

,
ρ(y)dy

7777

≤ ,ρ,L∞(B(x,1))

ˆ

B(x,2ε)

/
|DiΓ(x− y)|+ 2

ε
|Γ(x− y)|

0
dy

≤
,ρ,L∞(B(x,1))

nwN

ˆ

B(x,2ε)

+
1

|x− y|N−1
+

2

ε(N − 2)|x− y|N−2

,
dy

= ,ρ,L∞(B(x,1))

+
2ε+

1

ε(N − 2)
4ε2

,

=
2Nε

N − 2
,ρ,L∞(B(x,1)).

In either case, we conclude that as ε → 0, wε(x) → w(x) and Diwε(x) → vi(x) for every
x ∈ RN . Therefore, w ∈ C1(RN) and vi = Diw, for each i = 1, . . . , N .

Now we give the property (H) introduced by Brezis and Kamin [9], which will be used
throughout all this work.

Definition 2.1.5.

Let ρ ∈ L∞
loc(RN), ρ(x) ≥ 0 and ρ not identically zero. We said that ρ has the property (H)

if there exist a bounded solution of Poisson’s equation (Pe).

Remark 2.1.1. In order not to move away from the work of Breziz and Kamin, we have given
the same definition introduced by them; however, the solutions in the above definition are
actually weak solutions, therefore, when we refer to solutions of Problem (Pe), we are actually
assuming that they are weak solutions.

The next result gives a sufficient and necessary condition to have the property (H).

Lemma 2.1.6. Let ρ ∈ L∞
loc(RN), ρ(x) ≥ 0 and ρ not identically zero. Then ρ satisfies property

(H) iff
c

|x|N−2
∗ ρ ∈ L∞%

RN
&
,

where we have denote by c = (N(N − 2)wN)
−1.

Proof. Suppose the property (H) is satisfied. Then, there exists U a bounded solution of (Pe).
By adding a constant we may always assume that U ≥ 0 in RN . On the other hand, for
each R > 0, from Lemma 2.1.3, Problem (2.1.3) has only one increasing weak solution
uR ∈ H1

0 (BR). In addition

uR(x) =

ˆ

BR

GR(x, y)ρ(y)dy.
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Let ϕ ∈ C∞
0 (BR) with ϕ ≥ 0. Then, from Green’s identities

−
ˆ

BR

U∆ϕdx =

ˆ

BR

∇U∇ϕdx =

ˆ

RN

∇U∇ϕdx =

ˆ

RN

ρ(x)ϕ(x)dx

≥
ˆ

BR

ρ(x)ϕ(x)dx =

ˆ

BR

∇uR∇ϕdx

= −
ˆ

BR

uR∆ϕdx,

from where
ˆ

BR

(U − uR)∆ϕdx ≤ 0.

Therefore, the maximum principle implies that uR ≤ U in BR for all R. Then, using the
monotone convergence theorem, we get

lim
R→∞

uR(x) =

ˆ

RN

Γ(x− y)ρ(y)dy =
c

|x|N−2
∗ ρ ∈ L∞%

RN
&
.

Reciprocally, suppose

u∞(x) :=
c

|x|N−2
∗ ρ ∈ L∞%

RN
&
.

From Lemma 2.1.4, we have u∞ ∈ C1
%
RN

&
. Now, let ϕ ∈ C∞

0 (RN) with ϕ ≥ 0. Since uR is
a lower solution of (PR), for R > 0 large enough, using Green’s identities, we have

ˆ

BR

ρϕdx =

ˆ

BR

∇uR∇ϕdx = −
ˆ

BR

uR∆ϕdx

= −
ˆ

BR

uR

/
(∆ϕ)+ − (∆ϕ)−

0
dx,

from where, using monotone convergence theorem, follows that

ˆ

RN

ρϕdx = −
ˆ

RN

u∞∆ϕdx =

ˆ

RN

∇u∞∇ϕdx.

Therefore the function u∞ ∈ H1
%
RN

&
∩ L∞%

RN
&
provides a bounded weak solution of (Pe),

and as a consequence the lemma is proved.

The next result is a consequence of the previous theorem.

Corollary 2.1.7. Suppose that ρ satisfies property (H). Then u∞ is the minimal positive solu-
tion of (Pe).

Proof. From Theorem 2.1.6, since ρ satisfies property (H), follows that w∞ is a bounded
positive solution of (Pe). Let U be a bounded positive solution of (Pe). The maximum
principle implies implies uR ≤ U in BR for all R > 0. Then

u(x) := lim
R→∞

uR(x) exist for every x ∈ RN ,
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and u ≤ U in RN . Since

lim
R→∞

uR(x) =

ˆ

RN

Γ(x− y)ρ(y)dy =
c

|x|N−2
∗ ρ = u∞(x),

follows that u∞ ≤ U in RN . Therefore u∞ is the minimal positive solution of (Pe).

The following result will allow us to show that u∞ tends to zero at infinity in a sense that
will be specified later.

Lemma 2.1.8. Suppose that ρ satisfies property (H). Then

lim
R→∞

 

∂BR

u∞(y)dS(y) = 0.

Proof. By Fubini’s theorem we have

1

RN−1

ˆ

∂BR

u∞(y)dS(y) =
1

RN−1

ˆ

RN

ρ(x)

+
ˆ

|y|=R

dS(y)

|x− y|N−2

,
dx

=
1

RN−1

+
ˆ

|x|<R

ρ(x)I(x)dx+

ˆ

|x|>R

ρ(x)I(x)dx

,
,

where we have denoted by

I(x) =

ˆ

|y|=R

dS(y)

|x− y|N−2
.

Let y ∈ ∂BR. Since the function

x 1→ Φ(x) =
1

N(N − 2)wN

1

|y − x|N−2

is harmonic for all x ∕= y in RN , we distinguish two cases:

i) |x| < R : By Mean-value formulas, for Laplace’s equation (see [25], [30]), we have

1

NwNRN−1

ˆ

∂B(0,R)

1

N(N − 2)wN

1

|y − x|N−2
dS(y) = Φ(0) =

1

N(N − 2)wN

1

|y|N−2

From where
ˆ

|y|=R

dS(y)

|y − x|N−2
= NwR

RN−1

RN−2
= NwNR.

ii) |x| > R : We have

|y − x|2 = |x|2 − 2x · y + |y|2

=
|y|2
R2

|x|2 − 2x · y +R2

= |x|2
+
|y|2
R2

− 2y · x

|x|2 +
R2

|x|2

,

= |x|2
+
|y|2
R2

|x|2 − 2y · x

|x|2 +R2 |x|2
|x|4

,

= |x|2
7777
y

R
−R

x

|x|2

7777
2

=
777
x

R

777
2
7777y −R2 x

|x|2

7777
2

.
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Then
ˆ

|y|=R

dS(y)

|y − x|N−2
=

+
R

|x|

,N−2 ˆ

∂BR

dS(y)
777y −R2 x

|x|2

777
N−2

.

However
777R2 x

|x|2

777 < R. Then, from i) we have

ˆ

|y|=R

dS(y)

|y − x|N−2
=

+
R

|x|

,N−2

NwNR.

Therefore from i), ii) we see that

 

∂BR

u∞(y)dS(y) =
c

RN−2

ˆ

|x|<R

ρ(x)dx+ c

ˆ

|x|>R

ρ(x)

|x|N−2
dx. (2.1.4)

Using that u∞ ∈ L∞(RN) and dominated convergence theorem, as R → ∞, the second integral
of (2.1.4) tends to zero. We estimate the first one by

c

RN−2

ˆ

|x|<R

ρ(x)dx =
c

RN−2

+
ˆ

|x|<R0

ρ(x)dx+

ˆ

R0<|x|<R

ρ(x)dx

,
,

for some R0 > 0. To determine R0 note that

1

RN−2

ˆ

R0<|x|<R

ρ(x)dx ≤
ˆ

R0<|x|<R

ρ(x)

|x|N−2
dx

≤
ˆ

R0<|x|

ρ(x)

|x|N−2
dx,

for each R0 > 0. Thus, for ε > 0 we choose R0 > 0 large enough satisfying

ˆ

R0<|x|

ρ(x)

|x|N−2
dx < ε.

Then, for this R0 we choose R > 0 big enough so that:

1

RN−2

ˆ

|x|<R0

ρ(x)dx ≤ CRN−1
0

RN−2
,ρ,L∞(BR0

) < ε.

Therefore, from (2.1.14), we get

lim
R→∞

 

∂BR

u∞(y)dS(y) = 0.

Corollary 2.1.9. Suppose that ρ satisfies property (H). Then

lim inf
|x|→∞

u∞(x) = 0.
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Proof. Since u∞(x) > 0 for all x ∈ RN ,

lim inf
|x|→∞

u∞(x)

exists and is greater than or equal to 0. Now, suppose by contradiction that

lim inf
|x|→∞

u∞(x) > 0.

Then, constants C,M > 0 would exists such that

u∞(y) ≥ C > 0, ∀|y| ≥ M.

Thus, for R > M we have
ˆ

∂BR

u∞(y)dS(y) ≥ C|∂BR| = CRN−1,

and consequently
 

∂BR

u∞(y)dS(y) ≥ C,

which contradicts the Lemma 2.1.8 . Therefore

lim inf
|x|→∞

u∞(x) = 0.

Lemma 2.1.10. Suppose that ρ satisfies property (H). Then any bounded positive solution U
of (Pe) such that

lim inf
|x|→∞

U(x) = 0

coincides with u∞.

Proof. Since u∞ is the minimal positive solution of (Pe) we have u∞ ≤ U in RN and

−∆(U − u∞) = 0 in RN

holds in the weak sense, that is to say then for every :
ˆ

RN

(U − u∞)∆ϕdx = 0 for all ϕ ∈ C∞
0 (RN).

Then from [28, Corollary 1.2.1] ( Weyl’s lemma), follows that (U − u∞) is harmonic in RN .
Furthermore (U − u∞) is bounded, then Liouville theorem yields

U − u∞ = C for all x ∈ RN ,

for some constant C ≥ 0. Using that

lim inf
|x|→∞

%
U − u∞

&
(x) = 0,

we get C = 0. Consequently U = u∞ in RN .
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Corollary 2.1.11. Any bounded positive solution U of (Pe) such that

lim
R→∞

 

∂BR

U(y)dS(y) = 0.

coincides with u∞.

Proof. From Corollary 2.1.9 proof, U satisfies

lim inf
|x|→∞

U(x) = 0.

Then, by Corollary 2.1.10, U = u∞ in RN .

Lemma 2.1.12. Assume U ∈ L∞(RN), with ∆U ∈ L∞
loc(RN), satisfies

!
$"

$#

−∆U ≤ ρ(x) in RN ,

lim
R→∞

 

∂BR

U(y)ds(y) = 0.

Then U ≤ u∞ in RN .

Proof. Set g = −∆(u∞ − U). Then g ∈ L∞
loc(RN) and u∞ − U is a bounded solution of

−∆u = g(x) in RN .

Thus, for every ϕ ∈ C∞
0

%
RN

&
with ϕ ≥ 0, we have

ˆ

RN

g(x)ϕdx =

ˆ

RN

∇ (u∞ − U)∇ϕdx ≥ 0.

Therefore g(x) ≥ 0. Then using equality:

lim
R→∞

 

∂BR

%
u∞ − U

&
(y)dS(y) = 0,

from Corollary 2.1.11, we obtain

u∞ − U =
c

|x|N−2
∗ g ≥ 0.

Thus U ≤ u∞ in RN .

Corollary 2.1.13. Suppose that ρ1 and ρ2 they are satisfies property (H) and ρ1 ≤ ρ2 in
RN . Let U1, U2 be bounded positive solutions of (Pe), when ρ = ρ1 and ρ = ρ2, respectively,
satisfying

lim
R→∞

 

∂BR

Ui(y)ds(y) = 0 for i = 1, 2.

Then U1 ≤ U2 in RN .
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Proof. Since U1 ∈ L∞(RN) satisfies:
!
$"

$#

−∆U1 ≤ ρ2(x) in RN

lim
R→∞

 

∂BR

U1(y)ds(y) = 0,

from Lemma 2.1.12, we have

U1 ≤
c

|x|N−2
∗ ρ2.

Then, using that

lim
R→∞

 

∂BR

U2(y)ds(y) = 0,

from Corollary 2.1.11, we see that U2 =
c

|x|N−2
∗ ρ2. Therefore, we find that

U1 ≤ U2 in RN .

That is to say, any bounded positive solution of (Pe) that vanishing in infinity depends mono-
tonically on ρ.

The following proposition shows us a class of ρ that satisfies property (H), which will be
used in later sections of this work.

Proposition 2.1.14. Assume

ρ(x) =
1

1 + |x|β for all x ∈ RN .

i) If β > 2. Then ρ satisfies the property (H).

ii) If β ≤ 2. Then ρ does not satisfy the property (H).

Proof. Let r ≥ 0 and put |x| = r, then

ρ(r) =
1

1 + |r|β .

Let

U(r) =

ˆ +∞

r

'
s1−N

ˆ s

0

tN−1ρ(t)dt

(
ds.

So, through simple calculations, we have

U ′(r) = −r1−N

ˆ r

0

tN−1ρ(t)dt,

U ′′(r) = −(1−N)r−N

ˆ r

0

tN−1ρ(t)dt− ρ(r) =
1−N

r
U ′(r)− ρ(r).

Therefore

−∆U(r) = −U ′′(r)− N − 1

r
U ′(r) = ρ(r).

Next, we show that U is bounded when β > 2. Here we distinguish the cases in which 2 < β < N
and β ≥ N .
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a) Let 2 < β < N . If r ≥ 1, it follows that

U(r) =

ˆ +∞

r

'
s1−N

ˆ s

0

tN−1

1 + tβ
dt

(
ds ≤

ˆ +∞

r

'
s1−N

ˆ s

0

tN−1−βdt

(
ds

=
1

N − β

ˆ +∞

r

s1−βds

=
1

(N − β)(2− β)
lim

b→+∞

%
b2−β − r2−β

&

=
r2−β

(N − β)(β − 2)

≤ 1

(N − β)(β − 2)
.

Similarly, if 0 < r < 1, U is shown and is bounded.

b) Let β ≥ N . Here, using the next fact:
For every a ∈ (0, N − 2) there are c0 > 0 and r1 ≥ 1 large enough such that ln(s) ≤ c0s

a

for all s ≥ r1, follow that

ln
%
1 + sN

&
≤ ln

%
2sN

&
= ln(2) +Nln(s) ≤ ln(2) + c0Nsa for every s ≥ r1.

Thus, if r ≥ r1, it follows that
ˆ +∞

r

'
s1−N

ˆ s

0

tN−1

1 + tβ
dt

(
ds =

ˆ +∞

r

'
s1−N

ˆ 1

0

tN−1

1 + tβ
dt

(
ds+

ˆ +∞

r

'
s1−N

ˆ s

1

tN−1

1 + tβ
dt

(
ds

≤
ˆ +∞

r

'
s1−N

ˆ 1

0

tN−1dt

(
ds+

ˆ +∞

r

'
s1−N

ˆ s

1

tN−1

1 + tN
dt

(
ds

=
1− ln(2)

N

ˆ +∞

r

s1−Nds+
1

N

ˆ +∞

r

s1−N ln
%
1 + sN

&
ds

≤ 1

N

ˆ +∞

r

s1−Nds+ c0

ˆ +∞

r

s1+a−Nds

=
r2−N

N(N − 2)
+

c0r
2+a−N

N − 2− a

≤ (1 + c0)r
2+a−N

N − 2− a

≤ 1 + c0
N − 2− a

.

Similarly, if 0 < r < r1, U is shown is bounded.

Therefore, from a) and b), we conclude that ρ satisfies property (H). Now, with regard to the
case β ≤ 2, using inequality

2tN−1

1 + tβ
≥

)
tN−1 if β ≥ 0 and 0 < t ≤ 1 or β < 0 and t > 1

tN−β−1 if β ≥ 0 and t > 1 or β < 0 and 0 < t ≤ 1,
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for 0 ≤ β ≤ 2, we see that

U(r) =

ˆ +∞

r

'
s1−N

ˆ 1

0

tN−1

1 + tβ
dt

(
ds+

ˆ +∞

r

'
s1−N

ˆ s

1

tN−1

1 + tβ
dt

(
ds

≥ 1

2

ˆ +∞

r

'
s1−N

ˆ 1

0

tN−1dt

(
ds+

1

2

ˆ +∞

r

'
s1−N

ˆ s

1

tN−β−1dt

(
ds

=
1

2N

ˆ +∞

r

s1−Nds+
1

2(N − β)

ˆ +∞

r

s1−N
%
sN−β − 1

&
ds

=

+
1

2N
− 1

2(N − β)

,
ˆ +∞

r

s1−Nds+
1

2(N − β)

ˆ +∞

r

s1−βds

=

+
1

2N
− 1

2(N − β)

,
r2−N

N − 2
+

1

2(N − β)(2− β)
lim

b→+∞

%
b2−β − r2−β

&

= +∞.

In the same way, it is shown that ρ does not satisfy property (H) when β < 0.

Remark 2.1.2. The previous proposition tells us that Problem (Pe) has a classic solution, if
and only if β > 2, when

ρ(x) =
1

1 + |x|β for all x ∈ RN .

Below we will give the main results presented in [9] regarding equation (2.1.1), that is to
say, of:

−∆u = ρ(x)uα in RN , 0 < α < 1 and N ≥ 3.

Theorem 2.1.15. Problem (2.1.1) has a bounded positive solution if and only if ρ satisfies
(H).

Proof.

A. Sufficient condition.
First suppose ρ satisfies property (H). Let R > 0. We claim that for each R, the problem

- −∆u = ρ(x)uα in BR

u = 0 on ∂BR

(PR)

possesses a unique positive weak solution uR ∈ H1
0 (BR) ∩ L∞(BR).

Indeed, let ϕ1 be a positive eigenfunction associated to the first eigenvalue λ1 of the
equation -

−∆ϕ1 = λ1ρ(x)ϕ1 in BR

ϕ1 = 0 on ∂BR.

Since 0 < α < 1, we can take ε > 0 enough small satisfying

λ1 ≤ εα−1ϕα−1
1 ,
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Then, for every φ ∈ C∞
0 (BR) with φ ≥ 0, we have

ˆ

BR

∇(εϕ1)∇φdx =

ˆ

BR

ελ1ρ1(x)ϕ1φdx ≤
ˆ

BR

ρ1(x)(εϕ1)
αφdx

Therefore, εϕ1 is a lower solution of (PR).
On the other hand, since ρ satisfies property (H), there exists U a bounded positive

solution of (Pe). Choosing C ≥ ||U ||α/(1−α)
∞ we have

Cρ(x) ≥ ρ(x)(CU)α in RN ,

which implies that CU is an upper solution of (PR) for all R > 0. Moreover we choose
ε > 0 enough small such that εϕ1 is a lower solution of (PR) and εϕ1 ≤ CU . Therefore,
Theorem 1.5.2 give us the existence of a weak solution uR ∈ H1

0 (BR)∩L∞(BR) of (PR)
such that

εϕ1 ≤ uR ≤ CU in BR.

Now, we will show that the solution uR of (PR) is unique. Indeed, suppose that u1 and
u2 are two positive solutions of (PR). Define

S = {s ∈ [0, 1] : su1 ≤ u2 on BR}.

We observe that 0 ∈ S. Furthermore, if 0 < s0 ∈ S, then for every s ∈ (0, s0) we have
s ∈ S. Hence, ηu1 ≤ u2 on BR where η = supS. We claim that η = 1. In fact, assume
by contradiction that η < 1. Since 0 < α < 1, for every ϕ ∈ C∞

0

%
BR

&
with ϕ ≥ 0 follows

that
ˆ

BR

∇(u2 − ηu1)∇ϕdx =

ˆ

BR

ρ(x)
%
uα
2 − ηuα

1

&
ϕdx

≥
ˆ

BR

ρ(x)uα
1

%
ηα − η

&
ϕdx,

≥ 0.

Therefore, the following relation holds in the weak sense

)
−∆(u2 − ηu1) ≥ 0 in BR

u2 − ηu1 = 0 on ∂BR.

Then, using the Maximum principle and [38, Theorem 1] (Hopf’s Lemma for weak solu-
tions) we see that either

i) u2 − ηu1 > 0 in BR with
∂

∂ν
(u2 − ηu1) < 0 on ∂BR, or

ii) u2 − ηu1 ≡ 0.

In the first case, there would be some ε1 > 0 such that u2 − ηu1 ≥ ε1u1, that is to say
u2 ≥ (η + ε1)u1, which is impossible. Respect ii), this case is also impossible, since if we
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would have u2 − ηu1 ≡ 0, then for each ϕ ∈ C∞
0

%
RN

&
with ϕ ≥ 0 follows that

0 =

ˆ

BR

∇(u2 − ηu1)∇ϕdx =

ˆ

BR

∇u2∇ϕdx− η

ˆ

BR

∇u1∇ϕdx

=

ˆ

BR

ρ(x)uα
2ϕdx+ η

ˆ

BR

ρ(x)uα
1ϕdx

= (ηα − η)

ˆ

BR

ρ(x)uα
1ϕdx,

from where, using that ρ is not identically zero, η = ηα is obtained, which is impossible.
Thus, we conclude that η = 1, i.e., u2 ≥ u1. Similarly, u2 ≤ u1. Consequently, u2 = u1.
Therefore, the solution uR of (PR) is unique.

Next, we will prove that the sequence uR is increasing with R. Indeed, let R′ > R. Then,
uR′ is an upper solution of (PR). On the other hand, we can choose ε > 0 enough small
for εϕ1 to be a solution of (PR) with εϕ1 ≤ uR′ in BR. This implies that there is a weak
solution v of (PR) with

εϕ1 ≤ v ≤ uR′ in BR.

Since Problem (PR) has only one weak solution given by uR, follows that

uR ≤ uR′ in BR for R′ > R.

Now, we will prove the existence of a solution of problem (2.1.1). In fact, since

uR ≤ CU in BR, (2.1.5)

for all R > 0 and uR is increasing, we get

u(x) := lim
R→∞

uR(x) exist for every x ∈ RN ,

and also
u ≤ CU in RN . (2.1.6)

Next, we will prove that u is a positive weak solution of (2.1.1).

From Lemma 2.1.3, follows that

uR(x) =

ˆ

BR

GR(x, y)ρ(y)u
α
R(y)dy, x ∈ BR.

Since GR and uR are increasing in R, using monotone convergence, and from (2.1.6), we
get

u(x) = c

ˆ

RN

ρ(y)uα(u)

|x− y|N−2
dy =

c

|x|N−2
∗ ρuα ∈ L∞(RN).

Thus, from Lemma 2.1.6 the function u is a weak solution of

−∆u = ρ(x)uα in RN .

Finally u is a minimal positive solution of (2.1.1), since each bounded positive solution
v of (2.1.1) is an upper solution of (PR) and we can take ε > 0 small enough such that
εϕ1 is a lower solution of (PR), then we see that uR ≤ v in BR. Hence, letting R → ∞,
we conclude that u ≤ v in RN .
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B. Necessary Condition.
Suppose u is a bounded positive solution of (2.1.1) and for each R > 0, wR ∈ H1

0 (BR) is
the only one weak solution of:

- −∆u = ρ(x) in BR

u = 0 on ∂BR,

which is increasing with R > 0 and given by

wR(x) =

ˆ

BR

GR(x, y)ρ(y)dy. (2.1.7)

On the other hand, set

v =
1

1− α
u1−α.

For each ϕ ∈ C∞
0

%
RN

&
with ϕ ≥ 0, the function ψ = u−αϕ is well defined and belong to

H1(RN). Then, using ψ as a test function for the equation (2.1.1), we have

ˆ

RN

∇u∇ψdx =

ˆ

RN

ρ(x)uαψdx,

where we get:
ˆ

RN

ρ(x)ϕdx =

ˆ

RN

∇u∇
%
u−αϕ

&
dx

=

ˆ

RN

∇u
%
u−α∇ϕ− αϕu−α−1∇u

&
dx

=

ˆ

RN

%
∇v∇ϕ− αu−α−1|∇u|2ϕ

&
dx

≤
ˆ

RN

∇v∇ϕdx.

Thus, from maximum principle, we have wR ≤ v in BR for all R > 0. Therefore

U(x) := lim
R→∞

wR(x) exist for every x ∈ RN

and
U(x) ≤ v in RN .

Therefore, in (2.1.7), letting R → ∞, from monotone convergence theorem, we obtain

U(x) = c

ˆ

RN

ρ(y)

|x− y|N−2
dy =

c

|x|N−2
∗ ρ ∈ L∞(RN).

Then, from Lemma 2.1.6, we conclude that U is a weak solution of (Pe). Furthermore,
the next inequality holds: %

(1− α)U
& 1

1−α ≤ u in RN .
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Remark 2.1.3. Since u satisfies (2.1.6) for any positive solution U of (Pe); in particular we
can take U = u∞ and by corollary 2.1.9 we conclude that

lim inf
|x|→∞

u(x) = 0.

Next, we will show a uniqueness result.

Theorem 2.1.16. Assuming ρ has property (H), then there is exactly one bounded positive
solution, u, of (2.1.1) satisfying

lim inf
|x|→∞

u(x) = 0. (2.1.8)

Proof. This proof is divided into 3 steps:

Step 1.
Assuming ρ1 ≤ ρ2 and they satisfy property (H). We claim that given any bounded
positive solution u1 of !

"

#

−∆u1 = ρ1(x)u
α
1 in RN

lim
R→∞

 

∂BR

u1 = 0,
(2.1.9)

there exists a bounded positive solution u2 of

!
"

#

−∆u2 = ρ2(x)u
α
2 in RN

lim
R→∞

 

∂BR

u2 = 0
(2.1.10)

such that u1 ≤ u2.
Indeed, since ρ2 satisfies property (H) there exists, v, bounded positive weak solution of

−∆v = ρ2(x) in RN

vanishing into infinity.

Since 0 < α < 1, v and u1 they are bounded, there exists C > 0 large enough such that

uα
1 (x) ≤ C and Cα−1vα(x) ≤ 1.

This implies that the following relation holds in the weak sense

−∆u1 ≤ Cρ2(x) in RN

and from Lemma 2.1.12, we have u1 ≤ Cv.
Put v1 = Cv. Since v1 is bounded, ρ2v

α
1 also satisfy property (H) and consequently there

exists, v2, unique bounded positive weak solution of

!
"

#

−∆v2 = ρ2(x)v
α
1 (x) in RN

lim
R→∞

 

∂BR

v2 = 0.

Thus, we see that
−∆v2 ≤ Cρ2(x) in RN
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holds in the weak sense. Then, from Lemma 2.1.12 we also have v2 ≤ Cv. Moreover,
since u1 ≤ v1, we have

−∆u1 ≤ ρ2(x)v
α
1 in RN

in the weak sense, and again from Lemma 2.1.12, we get u1 ≤ v2. In this way there
exists a sequence vn of bounded positive weak solutions of

!
"

#

−∆vn = ρ2(x)v
α
n−1(x) in RN

lim
R→∞

 

∂BR

vn = 0

satisfying
u1 ≤ · · · ≤ vn ≤ · · · ≤ v2 ≤ v1 in RN .

Therefore, there exists

lim
n→∞

vn(x) := w(x) for every x ∈ RN

and w is a bounded positive solution of (2.1.10) satisfying u1 ≤ w.

Step 2.
Assume we have proven uniqueness for any ρ > 0, then we also have uniqueness for a
general ρ ≥ 0.
For this purpose, let ρε = ρ+ εh where h ∈ C∞(RN)∩L1(RN) with h > 0. Also let uε be
the unique bounded positive weak solution of

!
"

#

−∆uε = ρε(x)u
α
ε in RN

lim
R→∞

 

∂BR

uε = 0,

and u be any bounded positive weak solution of

!
"

#

−∆u = ρ(x)uα in RN

lim
R→∞

 

∂BR

u = 0.

By step 1 and by the uniqueness of uε we have

u ≤ uε.

Now, we prove that u = v, where v is the minimal positive weak solution of (2.1.1),
constructed in Theorem 2.1.15, vanishing in infinity.
Indeed let uε,R and uR be the positive weak solutions of

-
−∆uε,R = ρε(x)u

α
ε,R in BR

uε,R = 0 on ∂BR
(2.1.11)

and -
−∆uR = ρ(x)uα

R in BR,
uR = 0 on ∂BR.

(2.1.12)
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Multiply (2.1.11) by uR and (2.1.12) by uε,R and by integrating we have
ˆ

BR

ρ(x)uα
ε,Ru

α
R

%
u1−α
ε,R − u1−α

R

&
dx =

ˆ

BR

ρ(x)
%
uε,Ru

α
R − uα

ε,RuR

&
dx

=

ˆ

BR

%
ρε(x)u

α
ε,RuR − ρ(x)uα

ε,RuR

&
dx

=

ˆ

BR

%
ρε(x)− ρ(x)

&
uα
ε,RuRdx

= ε

ˆ

BR

huα
ε,RuRdx

≤ εC||h||L1(RN ),

where C is independent of R. Passing to the limit as R → ∞ we obtain
ˆ

RN

ρ(x)uα
ε v

α
%
u1−α
ε − v1−α

&
dx ≤ Cε

and considering v ≤ u ≤ uε, 0 < α < 1, we have
ˆ

RN

ρ(x)uαvα(u1−α − v1−α)dx ≤ Cε.

Doing ε → 0 we conclude
ˆ

RN

ρ(x)
%
uvα − uαv

&
dx = 0.

Again, using v ≤ u we get
ˆ

RN

ρ(x)
%
vvα − uαv

&
dx = 0.

Thus ρ(x)vα = ρ(x)uα. Hence, ∆(u − v) = 0 in RN in the sense weak. Finally using
lim inf
|x|→∞

(u− v) = 0 , we conclude that

u = v in RN ( see Lemma 2.1.10).

Before going to the last stage, we must give a result about bounded domains, which in-
volves the use of parabolic equations. For this, we begin by giving the following definition:

Definition 2.1.17. Let Ω the exterior of an (n−1)-dimensional smooth closed surface ∂Ω
in the space RN , N ≥ 3. Let T > 0, m > 1 and w0 ∈ L∞(Ω). We said w ∈ L∞

loc(Ω×(0, T ))
is a weak solution of the Filtration equation

!
$$"

$$#

ρ(x)
∂w

∂t
− ∆wm = 0 in Ω × (0, T )

w(x, 0) = w0(x) in Ω

w(x, t) = 0 on ∂Ω × (0, T ),

(2.1.13)

if
ˆ

Ω×(0,T )

/
wm(x, t)∆ϕ(x, t) + ρ(x)w(x, t)ϕt(x, t)

0
dxdt+

ˆ

Ω

ρ(x)w0(x)ϕ(x, 0)dx = 0,

for all ϕ ∈ C∞
0 (Ω× (0, T )).
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Remark 2.1.4.

i) Here, consider the space C∞
0 (Ω × (0, T )) be a set of functions ϕ(x, t) belonging to

C∞(Ω× (0, T )) ∩ C(Ω× (0, T )), such that

ϕ(x, t) = 0 on ∂Ω× (0, T ), ϕ(x, t) = 0 on ∂BR × (0, T ),

and ϕ = 0 if t > T −ε(ϕ) or |x| > R(ϕ), where ε(ϕ) ∈ (0, T ), R(ϕ) > R0 and R0 > 0
is chosen so that the ball BR0 contains the surface ∂Ω. For more details see [17].

ii) Definition of weak solution of Problem (2.1.13), when Ω is the whole space RN , it
is the same as the previous one, taking into account that ∂Ω = ∅.

Theorem 2.1.18. Let N ≥ 3.

a) If
ˆ

Ω

ρ(x)w0(x)

|x|N−2
dx < ∞,

then, Problem (2.1.13) has only one weak solution, w, satisfying

lim
R→∞

R1−N

ˆ

∂BR

+
ˆ T

0

wm(x, t)dt

,
dS(x) = 0.

b) If w0 ∈ C1,α(BR), then ∂wm
R /∂xi exists and is continuous as a function of xi every-

where in BR × (0, T ), for each i = 1, . . . , N .

c) If there exists another solution w̃(x, t) of (2.1.13) with w̃(x, t) ≥ 0 on Ω × (0, T )
and w̃(x, 0) ≥ w0(x) then w̃(x, t) ≥ w(x, t) in Ω× (0, T ).

Proof.

a) The proof can be found in [17, Theorem 2].

b) The proof of this regularity result can be found in [4, Theorem ].

c) The proof of this comparison result can be found in [17, Theorem 3].

Now, notice that if u(x) is a bounded weak solution of (2.1.1). Then, for each τ > 0,

zτ (x, t) =
Cu

1
m

(t+ τ)
1

m−1

satisfies:

∂zτ
∂t

= − Cu
1
m

(m− 1)(t+ τ)
m

m−1

and zmτ =
Cmu

(t+ τ)
m

m−1

,
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where m = 1
α
> 1, put C = (m− 1)

−1
m−1 . From where, using that u is a weak solution of

(2.1.1) and Green’s identities, for each ϕ ∈ C∞
0 (RN × (0,∞)) we have

0 = −
ˆ

RN×(0,∞)

ρ(x)u
1
mϕ

(t+ τ)
m

m−1

+
Cm − C

m− 1

,
dxdt

= −
ˆ

RN×(0,∞)

'
Cm

(t+ τ)
m

m−1

∇u∇ϕ− Cu
1
m

(m− 1)(t+ τ)
m

m−1

ρ(x)ϕ

(
dxdt

= −
ˆ

RN×(0,∞)

+
∇zmτ ∇ϕ+ ρ(x)

∂zτ
∂t

ϕ

,
dxdt

=

ˆ

RN×(0,∞)

%
zmτ ∆ϕ+ ρ(x)zτϕt

&
dxdt+

ˆ

RN

ρ(x)zτ (x, 0)ϕ(x, 0)dx,

in other words, zτ is a weak solution of the problem:
!
$$"

$$#

ρ(x)
∂zτ

∂t
− ∆zm

τ = 0 in RN × (0,∞)

zτ (x, 0) =
Cu

1
m

τ
1

m−1

in RN .

Furthermore, since u ∈ C1,α(RN), from regularity ∂wm
R /∂x is continuous as a function of

x everywhere in RN × (0, T ).
Next we will show the general result of uniqueness.

Step 3.
By step 2, we suppose that ρ ∈ L∞

loc(RN) and ρ > 0.
Let v be the minimal bounded positive weak solution of (2.1.1), constructed in Theorem
2.1.15, vanishing at infinity and let u be any bounded positive weak solution of (2.1.1)
satisfying (2.1.8). Next we will prove that u = v.
In fact, let wR be a only one weak solution of

!
$$$"

$$$#

ρ(x)
∂wR

∂t
− ∆wm

R = 0 in BR × (0, T )

wR(x, 0) = Cu
1
m (x) in BR

wR(x, t) = 0 on ∂BR × (0, T ).

From comparison result, it follows that wR is increasing with R > 0, and since z1(x, 0) =

Cu
1
m (x), we have

wR(x, t) ≤ z1(x, t) in BR × (0, T ),

for all R > 0. From where, letting R → ∞, the sequence wR increases to some limit
w∞(x, t) which satisfies

!
"

#
ρ(x)

∂w∞

∂t
− ∆wm

∞ = 0 in RN × (0, T )

w∞(x, 0) = Cu
1
m (x) in RN

(2.1.14)

and also
w∞(x, t) ≤ z1(x, t) in RN × (0, T ).
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Furthemore, we claim that w∞(x, t) = z1(x, t). For this purpose, notice that z1 and w∞
are weak solutions of (2.1.14), then for each ϕ ∈ C∞

0 (RN × (0,∞)) we have

0 =

ˆ

RN×(0,∞)

+
∇(zm1 − wm

∞)∇φ+ ρ(x)
∂

∂t
(z1 − w∞)φ

,
dxdt.

Now, let η = R → R a nonnegative function in C∞(R) with 0 ≤ η ≤ 1, η′ ≤ 0,

η(s) :=

-
0 if s ≥ 1,
1 if s ≤ 0,

and for ε ∈ (0, T ), τ ∈ (0, T − ε), set

ηετ (t) = η

+
t− τ

T − ε− τ

,
.

Moreover, put

φ(x) =
1

N(N − 2)wN

+
1

|x|N−2
− 1

RN−2

,
, x ∕= 0 in BR.

Thus, using the function ϕ ∈ C∞
0 (BR × (0, T )) given by ϕ = φ · ηετ as test function, we

find:

I1 + I2 :=

ˆ

BR×(0,T )

/
∇(zm1 − wm

∞)∇ϕ+ ρ(x)
∂

∂t
(z1 − w∞)ϕ

0
dxdt = 0, (2.1.15)

for all R > 0. For ε ∈ (0, T ) small enough, an integration yields:

I2 =

ˆ

BR×(0,T )

ρ(x)
∂

∂t
(z1 − w∞)ϕdxdt =

ˆ

BR×(0,T )

ρ(x)φ(x)

ˆ T

0

+
∂

∂t
(z1 − w∞)ηετ (t)dt

,
dx

=

ˆ

BR

ρ(x)φ(x)
/
z1 (x, T )− w∞ (x, T )

0
dx.

On the other hand, using Green’s identities follows that

ˆ

BR

∇(zm1 − wm
∞)∇φdx = −

ˆ

BR

(zm1 − wm
∞)∆φdx+

ˆ

∂BR

(zm1 − wm
∞)

∂φ

∂ν
dS(x). (2.1.16)

Now, for every δ > 0, we have
ˆ

BR

(zm1 − wm
∞)∆φdx =

ˆ

BR\Bδ

(zm1 − wm
∞)∆φdx+

ˆ

Bδ

(zm1 − wm
∞)∆φdx

=

ˆ

Bδ

(zm1 − wm
∞)∆φdx

=

ˆ

∂Bδ

(zm1 − wm
∞)

∂φ

∂ν
dS(x)−

ˆ

Bδ

∇(zm1 − wm
∞)∇φdx

:= I3 − I4.
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Regarding I3, for every x ∈ ∂B(y, δ) we have

∂φ

∂ν
(x) = ∇φ(x) · ν =

'
−1

NwN

N1

i=1

xi

|x|N

(
·
+
xi

|x|

,
= − 1

NwNδN−1
.

Therefore

I3 =

ˆ

∂Bδ

(zm1 − wm
∞)

∂φ

∂ν
dS(x) = − 1

NwNδN−1

ˆ

∂Bδ

%
zm1 (x, t)− wm

∞(x, t)
&
dS(x)

→ −
/
zm1 (0, t)− wm

∞(0, t)
0
as δ → 0.

Now, regarding I4, from regularity

I4 =

7777
ˆ

Bδ

∇(zm1 − wm
∞)∇φdx

7777 ≤
supBδ

|∇(zm1 − wm
∞)|

NwN

ˆ

Bδ

1

|x|N−1
dx

= δ sup
Bδ

|∇(zm1 − wm
∞)|

→ 0 as δ → 0.

Therefore for ε ∈ (0, T ) small enough, from (2.1.16), we conclude that:

I1 =

ˆ T

0

/
zm1 (0, t)− wm

∞(0, t)
0
dt+

ˆ

∂BR×(0,T )

(zm1 − wm
∞)

∂φ

∂ν
dS(x)dt.

Next, we will show that the previous integral on the right side converges to 0, as R → ∞,
indeed, in a similar way to I3, from Lemma 2.1.8, we have:

7777
ˆ

∂BR×(0,T )

(zm1 − wm
∞)

∂φ

∂ν
dS(x)dt

7777 ≤
2T

NwNRN−1

ˆ

∂BR

u(x)dS(x)

=
2T

NwN

 

∂BR

u(x)ds(x)

→ 0 as R → ∞.

From where, letting R → ∞ in (2.1.15) and using monotone convergence theorem, we
find:

ˆ T

0

/
zm1 (0, t)− wm

∞(0, t)
0
dt+

ˆ

RN

ρ(x)Γ(x)
/
z1 (x, T )− w∞ (x, T )

0
dx = 0,

from where using that Γ, ρ > 0 and since T > 0 is arbitrary we obtain w∞(x, t) = z1(x, t)
for all x ∈ RN and for all t > 0.

On the other hand, since u, v ∈ L∞(RN) and they are positive functions, there exists
tR > 0 such that

u
1
m <

v
1
m

t
1

m−1

R

in BR.
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Thus, from comparison result, we have

wR(x, t) ≤
Cv

1
m

(t+ tR)
1

m−1

in BR × (0, T ),

and thus

wR(x, t) ≤
Cv

1
m

t
1

m−1

in BR × (0, T ).

Finally passing to the limit, as R → ∞, in the above inequality and considering that
T > 0 is arbitrary, we obtain

w∞(x, t) ≤ Cv
1
m

t
1

m−1

in RN × (0,∞),

that is to say:
Cu

1
m

(t+ 1)
1

m−1

≤ Cv
1
m

t
1

m−1

,

which implies that u ≤ v as t → ∞. Therefore, u = v.

Remark 2.1.5. There exist other bounded positive solutions of (2.1.1) which do not satisfy
(2.1.8). In fact, given any positive constant a, there exists a solution of (2.1.10) satisfying

lim inf
|x|→∞

u(x) = a.

Indeed, consider the problem

-
−∆u = ρ(x)uα in BR

u = a on ∂BR.
(2.1.16)

It is clear that u = a is a lower solution of Problem (2.1.16). Moreover, there exists C > 0
large enough such that

u =
C

|x|N−2
∗ ρ+ a

is an upper solution of (2.1.16) for all R > 0. Therefore using lower and upper solution
technique, as in Theorem (2.1.1), we find u∞ ∈ H1

%
RN

&
∩ L∞%

RN
&
solution of:

−∆u = ρ(x)uα in RN ,

satisfying

a ≤ u(x) ≤ C

|x|N−2
∗ ρ+ a in RN ,

hence
lim inf
|x|→∞

u(x) = a.
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2.2 The linear Schrödinger equation

After having investigated the existence and uniqueness of solutions of the equation:

−∆u = ρ(x)uα in RN ,

which was obtained assuming the property (H), that is, there is a bounded solution of linear
equation:

−∆u = ρ(x) in RN

a natural generalization of this problem is to study existence of bounded solutions for the
following linear Schrödinger equation

−∆u+ V (x)u = ρ(x) in RN (2.2.1)

and later a nonlinear Schrödinger equation of type

−∆u+ V (x)u = f(x, u) in RN . (NS)

Recently J. Cardoso, P. Cerda, D. Pereira and P. Ubilla (see [11]) completely develop of the
problem (2.2.1) in order to obtain the existence of at least two solutions of Problem (NS)
where the models f(x, u) studied were:

i) ρ(x)uq ii) λρ(x)(u+ 1)p iii) λρ(x)(uq + up),

where 0 < q < 1 < p < 2∗ − 1 and ρ satisfies property (H), in all three cases.

However, this section will give the main results regarding linear Schrödinger (2.2.1), which
will be used in Chapter 3.

As noted in [11] u ∈ C2(RN) given by

u(x) =
1

(1 + |x|β)γ ,

where β > 2 and γ ≥ 0 is a classical solution of the linear schrödinger equation (2.2.1) for V
and ρ given by

V (x) =
γ(γ + 1)β2|x|2(β−1)

(1 + |x|β)2 and ρ(x) =
γ(β +N − 2)|x|β−2)

(1 + |x|β)γ+1
,

while the linear Schrödinger equation (2.2.1) with

V (x) =
1

1 + |x|α and ρ(x) =
1

1 + |x|β

does not have any bounded solution for any α > β and β ∈ (0, 2] (see Example 2.2.9). This
tells us that the existence and nonexistence of bounded positive solutions for equation (2.2.1)
is related to the growth of V and ρ. For this reason, we will assume:

1. V : RN → R is a nonnegative continuous potential and there exist a,A,α > 0, such that

a

1 + |x|α ≤ V (x) ≤ A

1 + |x|α for all x ∈ RN . (Hα
V )
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2. ρ : RN → R is smooth and there exists k1 > 0, such that

0 < ρ(x) ≤ k1
1 + |x|β for all x ∈ RN , (Hρ)

with α + β > 4.

Next we present the theorems related to Problem (2.2.1). For this purpose we introduce a
compatibility condition between ρ and V , given in [11].

Definition 2.2.1. Suppose that ρ has the property (H) and let U be the bounded solution of
(Pe) i.e.

−∆U = ρ(x) in RN .

We say that V and ρ are compatible if

1

|x|N−2
∗ (V U) ∈ L∞%

RN
&
.

Remark 2.2.1. Notice that V and ρ are compatible says that the product V U also has the
property (H).

Lemma 2.2.2. Assume that ρ satisfies (Hρ) and V satisfies (Hα
V ) with α ∈ (0, 2). Then V

and ρ are compatible

Proof. Since ρ satisfies (Hρ), by Proposition 2.1.14 there exists C > 0 such that

U(x) ≤ C

1 + |x|β−2
for all x ∈ RN .

Thus from (H2
V ) we also have

V (x)U(x) ≤ AC

1 + |x|α+β−2
for all x ∈ RN ,

which implies
1

|x|N−2
∗
%
V (x)U(x)

&
∈ L∞%

RN
&

whenever α + β > 4.

Theorem 2.2.3. If V and ρ are compatible, then the linear Schrödinger equation (2.2.1) has
a bounded positive solution.

Proof. Let U be the only one bounded positive solution of (Pe), vanishing in infinity, given by
Lemma 2.1.6, and let uR be a nonnegative solution of the problem

- −∆uR + V (x)uR = ρ(x) in BR

uR = 0 on ∂BR.
(2.2.2)

Since V ∈ L∞(BR) and ρ(x) > 0 it follows that uR ≥ 0 in BR and uR ∕= 0. Note that

−∆uR ≤ −∆uR + V (x)uR = ρ(x) = −∆U in BR.
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Using the maximum principle, we see that uR(x) ≤ U(x) in BR. Moreover, uR is increasing
in R, that is, if R′ > R then uR′ ≥ uR in BR. In fact, uR′ is an upper solution of (2.2.2) in BR

then

−∆(uR′ − uR) + V (x)(uR′ − uR) ≥ 0 in BR

with uR′ − uR = uR′ ≥ 0 on ∂BR. The maximum principle implies that uR′ ≥ uR in BR.
Now define vR = U − uR. Then, vR is solution of the equation

- −∆vR = V (x)uR in BR

uR = U on ∂BR.

Furthermore vR ≤ U for all R > 0 and vR ≥ vR′ for R ≤ R′. Using the Green’s representation
formula, we see that

vR(x) = c1

ˆ

∂BR

R2 − |x2|
R|x− y|N U(y)dy + c2

ˆ

BR

GR(x, y)V (y)uR(y)dy.

Let UV := lim
R→∞

uR. Using monotone convergence, we obtain

lim
R→∞

ˆ

BR

GR(x, y)V (y)uR(y)dy = c

ˆ

RN

V (y)UV (y)

|x− y|N−2
dy.

On the other hand, since |x− y| ≥ |y|− |x| = R− |x| for any |y| = R, it follows that

1

|x− y|N ≤ 1

(R− |x|)N ,

for large values of R, which implies

ˆ

∂BR

R2 − |x2|
R|x− y|N U(y)dy ≤ 1

RN−1

ˆ

∂BR

(R2 − |x2|)RN−2

(R− |x|)N U(y)dy

≤ (R2 − |x2|)RN−2

(R− |x|)N

 

∂BR

U(y)dy → 0, R → ∞.

Therefore v := lim
R→∞

vR is given by

v(x) = c

ˆ

RN

V (y)UV (y)

|x− y|N−2
dy.

Using that UV ≤ U and the compatibility between V and ρ, we get v ∈ L∞(RN). Moreover the
function v satisfies

−∆v = V (x)UV (x) in RN

and

v = lim
R→∞

vR = lim
R→∞

(U − uR) = U − UV .

Thus we obtain

ρ(x) +∆UV = −∆(U − UV ) = −∆v = V (x)UV in RN
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or equivalently

−∆UV + V (x)UV = ρ(x) in RN .

Moreover we see that

lim
|x|→∞

UV = lim
|x|→∞

(U − v) = 0.

As an application of the previous theorem, we can build many examples of linear Schrödinger
equation (2.2.1) which have at least one bounded positive solution.

Example 2.2.4. Let α > γ ≥ 0 and β > 2 with α + β > 4 + γ, then the problem

−∆u =
|x|γ

1 + |x|αu =
1

1 + |x|β in RN

has a unique bounded positive solution satisfying

UV (x) = U(x)− c

ˆ

RN

UV (y)|y|γ
(1 + |y|α)|x− y|N−2

dy

where U is the only bounded positive solution of (Pe).

Next, we will assume two new hypotheses, in order to obtain a lower bound for the solution
of the problem (2.2.1).

Lemma 2.2.5. Assume that ρ satisfies (Hρ) and

k0
1 + |x|β ≤ ρ(x) for all x ∈ RN (H ′

ρ)

for some constant k0 > 0 with β > 2 and also assume V : RN → R is a nonnegative continuous
potential verifying

c1µ

1 + |x|2 ≤ V (x) ≤ µ

1 + |x|2 for all x ∈ RN (H2
V )

for some 0 < c1 < 1 .
Then the bounded positive solution UV , for the linear schrödinger equation (2.2.1), satisfies

(1− c2µ)U(x) ≤ UV (x) ≤ U(x) for all x ∈ RN .

for some constant c2 > 0.

Proof. Hypotheses (Hρ), (H
2
V ) imply that V and ρ are compatible for any µ > 0. From the

proof of the Theorem 2.2.3, we see that the solution UV of (2.2.1) satisfies

UV (x) = U(x)− c

ˆ

RN

V (y)UV (y)

|x− y|N−2
dy

or equivalently
UV (x)

U(x)
= 1− c

U(x)

ˆ

RN

V (y)UV (y)

|x− y|N−2
dy.
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The hypothesis (Hρ) implies that there exists c2 > 0 such that

U(x)

1 + |x|2 ≤ c2
1 + |x|β in RN .

Then we have
ˆ

RN

V (y)UV (y)

|x− y|N−2
dy ≤

ˆ

RN

µU(y)

1 + |y|2 .
1

|x− y|N−2
dy

≤ c2µ

ˆ

RN

1

(1 + |y|β)|x− y|N−2

= c1µU0(x)

where U0 is the unique bounded positive solution, vanishing in infinity, of

−∆U0 =
1

1 + |x|β in RN .

Since (H ′
ρ) we see that k0U0 ≤ U , then

c

U(x)

ˆ

RN

V (y)UV (y)

|x− y|N−2
dy ≤ c3µ

for some constant c3 > 0. Therefore

UV (x)

U(x)
≥ (1− c4)

for some constant c4 > 0.

Corollary 2.2.6. Assume the hypotheses (Hρ), (H
′
ρ) and (H2

V ). Let UV be the bounded positive
solution for the linear Schrödinger equation (2.2.1). Then there exists Cµ > 0 such that

ρ(x)

V (x)UV (x)
≤ Cµ for all x ∈ RN .

Proof. By Lemma 2.2.5, there exist 0 < c1 < 1 and c2 > 0 such that

lim sup
|x|→∞

ρ(x)

V (x)UV (x)
≤ lim sup

|x|→∞

ρ(x)

(1− c2µ)V (x)U(x)

≤ lim sup
|x|→∞

ρ(x)(1 + |x|2)
c1µ(1− c2µ)U(x)

≤ lim sup
|x|→∞

k1(1 + |x|2)
c1µ(1− c2µ)(1 + |x|β)U(x)

≤ Cµ lim sup
|x|→∞

(1 + |x|2)|x|β−2

1 + |x|β

< Cµ < ∞

for some constant Cµ > 0.
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As a final comment on equation (2.2.1), we will give two results, if you are interested,
you can see their proofs in [11], which show nonexistence of bounded solutions to the problem
(2.2.1).

Theorem 2.2.7. Let ρ ∈ L∞(RN) be a positive potential such that does not satisfies property
(H) and V satisfying

lim
|x|→∞

V (x)

ρ(x)
= 0.

Then, the linear Schrödinger equation (2.2.1) does not have positive and bounded solutions.

The previous theorem is a consequence of the following theorem that generalizes the Lemma
2.1.6

Lemma 2.2.8. Assume that ρ ∈ L∞
loc(RN) is a nonnegative only outside of some ball centered

at the origin, i.e. there exists a constant M > 0 such that

ρ(x) ≥ 0 a.e. in |x| ≥ M,

and that ρ is not identically zero, then the equation

−∆u = ρ(x) in RN

has a bounded solution iff
1

|x|N−2
∗ ρ ∈ L∞(RN).

Example 2.2.9. As an application of Theorem 2.2.7 , if β < α and β ≥ 2, then the linear
Schrödinger equation (2.2.1)

−∆u =
1

1 + |x|αu =
1

1 + |x|β in RN ,

has no bounded positive solution.
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Chapter 3

Elliptic systems involving Schrödinger
operators

In this Chapter, assuming the conditions (Hα
V ), (Hρ) and using the upper and lower solutions

techniques, we first prove the existence of a bounded positive solution of System:

!
$"

$#

−∆u + V1(x)u = λρ1(x)(u + 1)r(v + 1)p in RN

−∆v + V2(x)v = µρ2(x)(u + 1)q(v + 1)s in RN ,

u(x), v(x) → 0 as |x| → ∞.

(Sλ,µ)

where λ, µ > 0, p, q, r, s ≥ 0, N ≥ 3. Furthermore, by imposing some restrictions on the powers
p, q, r, s without additional hypotheses on the weights ρi, we obtain a second solution using
variational methods. In this context we consider two particular cases: a gradient system and a
Hamiltonian system.

3.1 Existence and nonexistence results. General case

The proof of existence of a solution of System (Sλ,µ) follows the line of [9], [11] and [35], that is
to say, we will apply some monotonicity methods. Since we are working with systems, we will
use the lower and upper solutions technique developed by Montenegro [35] to obtain a solution
(uR, vR) of

!
$"

$#

−∆u + V1(x)u = λρ1(x)(u + 1)r(v + 1)p in BR

−∆v + V2(x)v = µρ2(x)(u + 1)q(v + 1)s in BR

u = 0 = v on ∂BR

(SR,λ,µ)

where BR = {x ∈ RN : |x| ≤ R}. Then, we will prove that (uR, vR) is an increasing sequence
of bounded solutions which converge to a bounded solution of (Sλ,µ), when the radius R tends
to infinity.

59
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The proof of Theorem 1 is based on the following Lemma.

Lemma 3.1.1. Assume that p, q, r, s ≥ 0. Let UVi
be a bounded positive solution of

)
−∆u + Vi(x)u = ρi(x) in RN

u(x) → 0 as |x| → ∞.
(3.1.1)

Then there is Λ > 0, which does not depend on R, such that if 0 < λ, µ < Λ, the System
(SR,λ,µ) has a minimal positive solution (uR, vR), which is increasing with R and satisfies

uR ≤ UV1 and vR ≤ UV2 . (3.1.2)

Proof. Let R > 0. Notice first that (u, v) = (0, 0) is a lower solution of (SR,λ,µ) for any
λ, µ ∈ (0,∞). To construct an upper solution, we define (u, v) = (UV1 , UV2). Then, (u, v) is an
upper solution of (SR,λ,µ) if and only if

)
−∆(UV1) + V1(x)(UV1) ≥ λρ1(x)

%
UV1 + 1

&r%
UV2 + 1

&p

−∆(UV2) + V2(x)(UV2) ≥ µρ2(x)
%
UV1 + 1

&q%
UV2 + 1

&s
.

These two inequalities hold if
)

1 ≥ λ
%
)UV1)∞ + 1

&r%)UV2)∞ + 1
&p

1 ≥ µ
%
)UV1)∞ + 1

&q%)UV2)∞ + 1
&s
.

Thus, we see that there exists Λ > 0 such that for 0 < λ, µ ≤ Λ, the pair (u, v) is an upper
solution of (SR,λ,µ), for any R > 0. Therefore, from Lemma 1.6.2, there is a solution (uR, vR)
of (SR,λ,µ) satisfying

0 ≤ uR ≤ UV1 and 0 ≤ vR ≤ UV2 .

Furthermore, we have uR ∕= 0 and vR ∕= 0 in BR, then by maximum principle

0 < uR ≤ UV1 and 0 < vR ≤ UV2 .

Now we will show existence of minimal solution for every R > 0. In fact, let (z, w) be any
bounded positive solution of (SR,λ,µ), which we already know exists, and let (u0, v0) be a
bounded positive solution of

!
$"

$#

−∆u + V1(x)u = λρ1(x) in BR

−∆v + V2(x)v = µρ2(x) in BR

u = 0 = v on ∂BR.

Then there is a sequence (un, vn) of solutions for
!
$"

$#

−∆un + V1(x)un = λρ1(x)(un−1 + 1)r(vn−1 + 1)p in BR

−∆vn + V2(x)vn = µρ2(x)(un−1 + 1)q(vn−1 + 1)s in BR

un = 0 = vn on ∂BR

for every n ∈ N. We see that

−∆(z − u0) + V1(x)(z − u0) = λρ1(x)
/
(z + 1)r(w + 1)p − 1

0

≥ 0 in BR.
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Therefore, by maximum principle, u0 ≤ z in BR. In the same way we see that v0 ≤ w in BR.
Now we claim that

un ≤ z and vn ≤ w in BR for all n ∈ N. (3.1.3)

Indeed, by principle of induction, let k ∈ N and suppose (3.1.3) holds for n = k. Then

−∆(z − uk+1) + V1(x)(z − uk+1) = λρ1(x)
/
(z + 1)r(w + 1)p − (uk + 1)r(vk + 1)p

0

≥ 0 in BR.

Thus, by maximum principle we have uk+1 ≤ z. Similarly vk+1 ≤ w. Then, the principle of
induction is satisfied. Furthermore, and again, using maximum principle, we have

u0 ≤ u1 ≤ . . . ≤ un and v0 ≤ v1 ≤ . . . ≤ vn.

Therefore, there exist the limits

lim
n→∞

un(x) := uR(x), lim
n→∞

vn(x) := vR(x) for every x ∈ BR

and thus (uR, vR) is a positive solution of (SR,λ,µ) satisfying

uR ≤ z and vR ≤ w in BR.

Since (z, w) is an arbitrary solution of (SR,λ,µ) we have that (uR, vR) is a minimal positive
solution of (SR,λ,µ).
We claim that (uR, vR) is increasing with R, that is, if R′ > R > 0, then

uR ≤ uR′ and vR ≤ vR′ in BR.

Indeed, if R′ > R then (uR′ , vR′) is an upper solution of (SR,λ,µ) and (u, v) = (0, 0) is a lower
solution of (SR,λ,µ), thus, there exists a solution (u, v) of (SR,λ,µ), such that

0 ≤ u ≤ uR′ and 0 ≤ v ≤ vR′ in BR.

Since (uR, vR) is the minimal solution of (SR,λ,µ), we have

uR ≤ u ≤ uR′ and vR ≤ v ≤ vR′ in BR.

This shows that (uR, vR) is increasing with R. Again, using the minimality of (uR, vR), we
obtain

uR ≤ UV1 and vR ≤ UV2 .

Proof of Theorem 1. Let 0 < λ, µ < Λ, R > 0 and (uR, vR) be the increasing sequence of
solution of (SR,λ,µ), given by Lemma 3.1.1. Thus, there exist the limits

lim
R→∞

uR(x) := u(x) and lim
R→∞

vR(x) := v(x) for every x ∈ RN .

We claim that (u, v) is a bounded positive solution of (Sλ,µ). Indeed, since ρ1 satisfies property
(Hρ) and u, v ∈ L∞(RN) there exists U1 ∈ L∞(RN) satisfying

−∆U1 = λρ1(x)(u+ 1)r(v + 1)p in RN , (3.1.4)
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and
lim

|x|→∞
U1(x) = 0. (3.1.5)

Let U1R denote the solution of equation
)

−∆U = λρ1(x)(uR + 1)r(vR + 1)p in BR

U = 0 on ∂BR.

It is clear that U1R is positive in BR. Now, we will show that it is bounded, and increasing
with R. Indeed, since uR and vR are bounded from above by u and v, respectively, we have

−∆(U1R − U1) = λρ1(x)
/
(uR + 1)r(vR + 1)p − (u+ 1)r(v + 1)p

0

≤ 0 in BR.

Likewise, for R′ > R, since uR, vR are increasing with R, we see that

−∆(U1R − U1R′) = λρ1(x)
/
(uR + 1)r(vR + 1)p − (uR′ + 1)r(vR′ + 1)p

0

≤ 0 in BR.

Therefore, using the maximum principle, we see that U1R is increasing and

U1R(x) ≤ U1(x) in BR (3.1.6)

for all R > 0. Using Green’s identities, we see that

U1R(x) = c

ˆ

BR

λGR(x, y)ρ(y)(uR(y) + 1)r(vR(y) + 1)pdy, x ∈ BR.

Since U1 := lim
R→∞

U1R is bounded by U1 in RN , thus by monotone convergence we have the

following representation formula

U1(x) = c

ˆ

RN

λρ(y)(u(y) + 1)r(v(y) + 1)p

|x− y|N−2
dy,

and therefore the function U1 provides a bounded solution of (3.1.4) (see Lemma 2.1.6).
Moreover by (3.1.5) and (3.1.6), U1 satisfies

lim
|x|→∞

U1(x) = 0,

and uniqueness of solution of (3.1.4)-(3.1.5) (see Lemma 2.1.10 ) implies that

lim
R→∞

U1R = U1 = U1.

Also note that

−∆uR ≤ −∆uR + V1(x)uR = λρ1(x)(uR + 1)r(vR + 1)p = −∆U1R in BR.

Using the maximum principle, we see that uR(x) ≤ U1R(x) in BR. We define w1R = U1R−uR.
Then w1R is a solution of the equation

- −∆w1R = V1(x)uR in BR

w1R = 0 on ∂BR.



3.1. EXISTENCE AND NONEXISTENCE RESULTS. GENERAL CASE 63

Also, w1R is increasing with R and w1R ≤ U1 for all R > 0. Using Green’s representation
formula, we see that

w1R(x) = c

ˆ

BR

GR(x, y)V1(y)uR(y)dy, x ∈ BR.

Using monotone convergence, we obtain

lim
R→∞

ˆ

BR

GR(x, y)V1(y)uR(y)dy = c

ˆ

RN

V1(y)u(y)

|x− y|N−2
dy.

Therefore, w1 := lim
R→∞

w1R is given by

w1(x) = c

ˆ

RN

V1(y)u(y)

|x− y|N−2
dy.

Using that u ≤ UV1 and the compatibility between V1 and ρ1, we get w1 ∈ L∞(RN). Note that
the function w1 satisfies

−∆w1 = V1(x)u(x) in RN

and
w1 = lim

R→∞
w1R = lim

R→∞
(U1R − uR) = U1 − u ( See Lemma 2.1.6).

Thus, we obtain
−∆(U1 − u) = −∆w1 = V1(x)u in RN

or equivalently,

−∆u+ V1(x)u = −∆U1 = λρ1(x)(u+ 1)r(v + 1)p in RN ,

that is,
−∆u+ V1(x)u = λρ1(x)(u+ 1)r(v + 1)p in RN .

Proceeding in the same way with v, and since (uR, vR) satisfy (3.1.2), we conclude that (u, v)
is a bounded positive solution of the system

!
$"

$#

−∆u + V1(x)u = λρ1(x)(u + 1)r(v + 1)p in RN

−∆v + V2(x)v = µρ2(x)(u + 1)q(v + 1)s in RN ,

u(x), v(x) → 0 as |x| → ∞.

Remark 3.1.1. We notice that is not difficult to verify that (u, v) is a minimal solution of
(Sλ,µ).

Next, we will give the proof of Theorem 2 which is the converse of Theorem 1.
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Proof of Theorem 2. Let (u, v) be a bounded positive solution of system (Sλ,µ). We will
follow the line developed in [35, Theorem 5.2], however the computations here are more delicate.
In fact, we consider the auxiliary function w = (u+ 1)a(v + 1)b, with a = 1− r and b = 1− s.
The following claims hold:

(1) 0 < a, b < 1.

(2) ∇w = a(u+ 1)a−1(v + 1)b∇u+ b(u+ 1)a(v + 1)b−1∇v.

(3) |∇w|2 = a2(u+ 1)2(a−1)(v + 1)2b|∇u|2 + b2(u+ 1)2a(v + 1)2(b−1)|∇v|2

+ 2ab(u+ 1)2a−1(v + 1)2b−1〈∇u,∇v〉.

(4)
|∇w|2
w

= a2(u+ 1)a−2(v + 1)b|∇u|2 + b2(u+ 1)a(v + 1)b−2|∇v|2

+ 2ab(u+ 1)a−1(v + 1)b−1〈∇u,∇v〉.

(5) ∆w = a(u+ 1)a−1(v + 1)b∆u+ 2ab(u+ 1)a−1(v + 1)b−1〈∇u,∇v〉+ b(u+ 1)a(v + 1)b−1∆v

+ a(a− 1)(u+ 1)a−2(v + 1)b|∇u|2 + b(b− 1)(u+ 1)a(v + 1)b−2|∇v|2.

(6) 2ab(u+ 1)a−1(v + 1)b−1〈∇u,∇v〉 ≤ a2(u+ 1)a−2(v + 1)b|∇u|2 + b2(u+ 1)a(v + 1)b−2|∇v|2.

Combining (4) and (6), it follows that

2ab(u+ 1)a−1(v + 1)b−1〈∇u,∇v〉 ≤ |∇w|2
2w

.

So, from (1), (5) and since (u, v) is solution of (Sλ,µ), we obtain

∆w ≤ |∇w|2
2w

+ a(u+ 1)a−1(v + 1)b∆u+ b(u+ 1)a(v + 1)b−1∆v

∆w ≤ |∇w|2
2w

+ a(u+ 1)a−1(v + 1)b
/
−λρ1(x)(u+ 1)r(v + 1)p + V (x)u

0

+ b(u+ 1)a(v + 1)b−1
/
−µρ2(x)(u+ 1)q(v + 1)s + V (x)v

0

≤ |∇w|2
2w

− aλρ1(x)(v + 1)b+p − bµρ2(x)(u+ 1)a+q + (a+ b)V (x)(u+ 1)a(v + 1)b.

On the other hand, let η ∈ R satisfying

1

η
=

1
b+p
b

+
1

a+q
a

.

Since pq < (r − 1)(s− 1) it follows that 1/2 ≤ η < 1. Using Young’s inequality, we have

/
(aλρ1(x))

bη
b+p (v+1)bη

0/
(bµρ2(x))

aη
a+q (u+1)aη

0
≤

+
aη

a+ q

,
aλρ1(x)(v+1)b+p+

+
bη

b+ p

,
bµρ2(x)(u+1)a+q,
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which implies that

∆w + (aλρ1(x))
aη
a+q (bµρ2(x))

bη
b+pwη ≤ |∇w|2

2w
+ (a+ b)V (x)w

+

+
aη

a+ q
− 1

,
aλρ1(x)(v + 1)b+p +

+
bη

b+ p
− 1

,
bµρ2(x)(u+ 1)a+q

≤ |∇w|2
2w

+ (a+ b)V (x)w.

Defining the function z =
1

1− η
w1−η, we get

−∆z = ηw−η−1|∇w|2 − w−η∆w

≥ ηw−η−1|∇w|2 − 1

2
w−η−1|∇w|2 + (aλρ1(x))

aη
a+q (bµρ2(x))

bη
b+p − (a+ b)V (x)w1−η

≥ (aλρ1(x))
aη
a+q (bµρ2(x))

bη
b+p − (1− η)(a+ b)V (x)z.

Since b1ρ(x) ≤ ρ2(x), 0 < (1− η)(a+ b) < 1 and V be a nonnegative potential, we obtain

−∆z + V (x)z ≥ c1ρ1(x),

where c1 = (aλ)
aη
a+q (b1bµ)

bη
b+p . Therefore, we conclude that c−1

1 z is a bounded positive upper
solution of

−∆u+ V (x)u = ρ1(x) in RN

satisfying
lim

|x|→∞
z(x) = 0. (3.1.7)

For every R > 0 denote by uR the increasing positive solution of the problem
-

−∆uR + V (x)uR = ρ1(x) in BR

uR = 0 on ∂BR.

By maximum principle, we have
uR ≤ c−1

1 z in BR.

So UV (x) := lim
R→∞

uR(x) there exists for every x in RN and satisfies

UV ≤ c−1
1 z in RN . (3.1.8)

By (3.1.7) and (3.1.7) we have UV is a bounded positive solution of

−∆UV + V (x)UV = ρ1(x) in RN

satisfying
lim

|x|→∞
UV (x) = 0.

In the same way it is shown that the linear schrödinger equation

−∆u+ V (x)u = ρ2(x) in RN

has a bounded positive solution.
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Remark 3.1.2. Note that the use of the auxiliary functions w = uav1−a have already been
used for different purposes; for instance, see [7, 34, 37, 39].

Next, we will prove a nonexistence result.

Lemma 3.1.2. Assume that r, s > 1 and p, q ≥ 0. Then there exists Λ > 0 such that for all
λ, µ > Λ, System (Sλ,µ) has no bounded positive solutions.

Proof. Let (z, w) a bounded positive solution of System (Sλ,µ). Let ϕ1, ψ1 be the positive
eigenfunction associated to the first eigenvalue λ1, µ1 of the Schrödinger equation

!
$"

$#

−∆ϕ1 + V1(x)ϕ1 = λ1ρ1(x)ϕ1 in BR

−∆ψ1 + V2(x)ψ1 = µ1ρ2(x)ψ1 in BR

ϕ1 = 0 = ψ1 on ∂BR.

By Hopf’s Lemma
∂ϕ1

∂ν
< 0 on BR.

Extending ϕ1 by 0 in RN \BR, and using Green’s formulas we have
ˆ

RN

∇z∇ϕ1dx =

ˆ

∂BR

z
∂ϕ1

∂ν
dS +

ˆ

BR

z(−∆ϕ1)dx

≤
ˆ

BR

z(−∆ϕ1)dx

= λ1

ˆ

BR

ρ1(x)zϕ1dx−
ˆ

BR

V1(x)zϕ1dx.

Therefore
ˆ

RN

%
∇z∇ϕ1 + V1(x)zϕ1

&
dx ≤ λ1

ˆ

BR

ρ1(x)zϕ1dx. (3.1.9)

On the other hand, using that p ≥ 0, r > 1 and that (z, w) is a solution of (Sλ,µ), we have
ˆ

RN

%
∇z∇ϕ1 + V1(x)zϕ11

&
dx = λ

ˆ

RN

ρ1(x)
%
z + 1

&r%
w + 1

&p
ϕ1dx

≥ λ

ˆ

BR

ρ1(x)zϕ1dx

Thus, by (3.1.9), it follows that

λ

ˆ

BR

ρ1(x)zϕ1dx ≤ λ1

ˆ

BR

ρ1(x)zϕ1dx.

Since z, ρ1, ϕ1 > 0 it implies that λ ≤ λ1. Likewise µ ≤ µ1. Taking Λ = max{λ1, µ1} the proof
is finished.

Before proving Theorem 3 let us to introduce the parameter λ∗ given by:

λ∗ = sup{λ > 0 : ∃µ > 0, (Sλ,µ) has a bounded positive solution},

which is well defined and finite by Theorem 1 and Lemma 3.1.2.
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Lemma 3.1.3. Assume that r, s > 1 and p, q ≥ 0. Then for all 0 < λ < λ∗, there is µ > 0
such that System (Sλ,µ) has a bounded positive solution.

Proof. Fixed λ ∈ (0,λ∗), there exists λ0 ∈ (λ,λ∗) such that System (Sλ0,µ) has a solution
(uλ0 , vµ), for some µ > 0. It is clear that (uλ0 , vµ) is an upper solution to the System (SR,λ,µ)
for all R > 0 and (0, 0) is a lower solution to these systems. Then from Lemma 1.6.2, there
is a bounded positive solution of (SR,λ,µ). This implies that System (SR,λ,µ) has a minimal
positive solution (zR,λ, wR,µ). Thus, by a similar argument to that in the proof of Theorem 1
there exists (zλ, wµ) a minimal bounded positive solution of System (Sλ,µ) given by

zλ(x) = lim
R→∞

zR,λ(x), wµ(x) = lim
R→∞

wR,µ(x), x ∈ RN .

Proof of Theorem 3. We define the function Γ : (0,λ∗) → [0,∞) by

Γ(λ) = sup{µ > 0 : (Sλ,µ) has a bounded positive solution}.

We claim that Γ it is a nonincreasing function. Indeed, let 0 < λ ≤ λ0 < λ∗. By Lemma 3.1.3
there is µ0 > 0 such that System (Sλ0,µ0) has a solution (uλ0 , vµ0). Thus Γ(λ0) ≥ µ0. We claim
that Γ(λ) ≥ Γ(λ0). In fact, if Γ(λ) < Γ(λ0), then we could find µ1 ∈ (Γ(λ),Γ(λ0)) and from the
definition of Γ(λ0) there would be µ2 ∈ (µ1,Γ(λ0)) and (zλ0 , wµ2) solution of (Sλ0,µ2), which is
an upper solution to the System (SRλ,µ2) for all R > 0 and therefore there is a bounded positive
solution of (Sλ,µ2). This implies that µ2 ≤ Γ(λ), which is a contradiction. Also since Γ(0,λ∗) is
an interval we conclude that Γ is continuous.

It is clear that System (Sλ,µ) has at least one bounded positive solution if 0 < µ < Γ(λ)
and has no solution if µ > Γ(λ), for every λ ∈ (0,λ∗).

Remark 3.1.3. In order to obtain the existence of a minimal bounded positive solution of
System (Sλ,µ), we only assume that the powers are positive. Now, to define the curve Γ, it was
necessary to assume r, s > 1 and p, q ≥ 0. Note that when the powers satisfy r, s ≥ 0, p, q > 1,
we may obtain a similar result to that of Theorem 3.



68 CHAPTER 3. ELLIPTIC SYSTEMS INVOLVING SCHRÖDINGER OPERATORS

3.2 The gradient system.

This section is devoted to the proof of Theorem 4. Note that under the conditions (Hρ) and
(Hα

V ) with α ∈ (0, 2] and α + β > 4, the potentials ρ and V are compatible, thus using a
similar argument as in Theorem 1, Lemma 3.1.2 and Lemma 3.1.3, we have that there
exists λ∗ > 0 such that for every 0 < λ < λ∗ there is a bounded positive solution of System
(3.2), which we will denote by (u1,λ, v1,λ), while for r, s > 1 and λ > λ∗ there are no bounded
positive solutions, and so, Theorem 4 part i) is proved.

Before proving the existence of the second solution of System (GSλ), let us observe that the
most natural energy functional Jλ : E → R, associated to the gradient system (GSλ) should
be given by

Jλ(u, v) =
1

2
,(u, v),2 − λ

ˆ

RN

ρ(x)F (u, v)dx,

where F : R2 → R is defined by

F (u, v) = (u+ 1)r+1(v + 1)s+1,

where we have assumed that r, s > 1 and r + s < 2∗ − 2. However, it is not well defined
because the Sobolev embeddings do not work. This is mainly due to the behavior near zero
of the nonlinearities and the fact that the ρ(x) coefficient does not necessarily satisfy any
integrability hypothesis. For this reason, in order to show the existence of a second solution for
System (GSλ), we will consider the following auxiliary system

)
−∆u + V (x)u = λρ(x)f(x, u, v) in RN

−∆v + V (x)v = λρ(x)g(x, u, v) in RN
(GSλ

A)

where the functions f , g are defined by

f(x, u, v) = f1
%
u1,λ + u+, v1,λ + v+

&
− f1

%
u1,λ, v1,λ

&

and

g(x, u, v) = f2
%
u1,λ + u+, v1,λ + v+

&
− f2

%
u1,λ, v1,λ

&
,

where for simplicity we have denoted u1,λ, v1,λ instead of u1,λ(x), v1,λ(x) , and where

f1(u, v) =
∂F

∂u
and f2(u, v) =

∂F

∂v
.

Now we define G : RN+2 → R by

G(x, u, v) = F
%
u1,λ + u+, v1,λ + v+

&
− F

%
u1,λ, v1,λ

&
−

/
f1
%
u1,λ, v1,λ

&
u+ + f2

%
u1,λ, v1,λ

&
v+

0
.

Then
∂G

∂u
= f(x, u, v) and

∂G

∂v
= g(x, u, v).

This shows that the auxiliary problem (GSλ
A) is also a gradient system. Clearly, if (u, v) is a

solution for the auxiliary system (GSλ
A), then (u1,λ + u, v1,λ + v) is a solution of System (3.2).
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Note that this type of idea has already been used in [11] (in RN) for the scalar equation.
In what follows, we will prove that the energy functional associated to the auxiliary system
(GSλ

A) given by

Jλ(u, v) =
1

2
,(u, v),2 − λ

ˆ

RN

ρ(x)G(x, u, v)dx

unlike the most natural energy functional, is well defined on E. In addition, Jλ belongs to the
C1(E,R) space and has a critical point at the Mountain Pass level for λ > 0 sufficiently small.

Lemma 3.2.1. The functional Jλ associated to (GSλ
A) is well defined in E.

Proof. First notice that for a, c > 0 and b, d ≥ 0, defining h : [0, 1] → R by

h(η) = (a+ ηb)t(c+ ηd)l

the Mean Value Theorem gives us the existence of ξ ∈ (0, 1) such that

(a+ b)t(c+ d)l − atcl = h(1)− h(0) = h′(ξ)

= t(a+ ξb)t−1(c+ ξd)lb+ l(a+ ξb)t(c+ ξd)l−1d.

So, it is not difficult to see that the following inequalities hold

(Itl) (a+b)t(c+d)l−atcl ≤

!
$$$$"

$$$$#

t(a+ b)t−1(c+ d)lb+ l(a+ b)t(c+ d)l−1d if t, l ≥ 1

tat−1(c+ d)lb+ l(a+ b)t(c+ d)l−1d if 0 ≤ t < 1, l ≥ 1

t(a+ b)t−1(c+ d)lb+ l(a+ b)tcl−1d if t ≥ 1, 0 ≤ l < 1

tat−1(c+ d)lb+ l(a+ b)tcl−1d if 0 < t, l < 1.

Also, note that the last inequality is valid for 0 ≤ t < 1, 0 < l < 1 or 0 < t < 1, 0 ≤ l < 1.
From now on, for simplicity, let us denote zλ := u1,λ+u+1 and wλ := v1,λ+ v+1. Using these
inequalities, we have

zr+1
λ ws+1

λ −
%
u1,λ + 1

&r+1%
v1,λ + 1

&s+1 ≤ (r + 1)zrλw
s+1
λ u+ (s+ 1)zr+1

λ ws
λv.

Again, using inequality (Irs), we see that

(r + 1)
/
zrλw

s+1
λ −

%
u1,λ + 1

&r%
v1,λ + 1

&s+1
0
u ≤ (r + 1)

/
rzr−1

λ ws+1
λ u+ (s+ 1)zrλw

s
λv
0
u.

Similarly we get

(s+ 1)
/
zr+1
λ ws

λ −
%
u1,λ + 1

&r+1%
v1,λ + 1

&s0
v ≤ (s+ 1)

/
rzrλw

s
λu+ (s+ 1)zr+1

λ ws−1
λ v

0
v.

Since u1,λ, v1,λ are bounded, from definition of G we see that there is C1 > 0 such that

G(x, u, v) ≤ C1(u
2 + v2) for u+ v ≈ 0.

It is also clear that there is C2 > 0 such that

G(x, u, v) ≤ C2(u+ v)r+s+2 for u+ v ≈ ∞.

Thus, there exists C > 0 such that

G(x, u, v) ≤ C
%
u2 + v2 + (u+ v)r+s+2

&
for all x ∈ RN and u, v ≥ 0. (3.2.2)
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Then using Proposition 1.2.3 we see that the functional associated to (GSλ
A) given by is well

defined. Moreover Jλ ∈ C1
%
E,R

&
with

J ′
λ(u, v)(ψ,φ) = 〈(u, v), (ψ,ϕ)〉 − λ

ˆ

RN

ρ(x)
%
f(x, u, v)ψ + g(x, u, v)φ

&
dx,

for any (u, v), (ψ,φ) ∈ E.

The nonlinearity G satisfies the following property which is more general than the classical
Ambrosetti-Rabinowitz condition:

Lemma 3.2.2. There exist θ ∈
%
2, 2∗

&
and C > 0 such that

uf(x, u, v) + vg(x, u, v)− θG(x, u, v) ≥ −C
%
u2 + v2

&

for all x ∈ RN and u, v > 0.

The proof of the lemma above is a direct consequence of the following two lemmas .

Lemma 3.2.3. There exist 2 < θ < 2∗ and r0 > 0 such that

0 < θG(x, u, v) ≤ uf(x, u, v) + vg(x, u, v) (3.2.3)

for all x ∈ RN and every u, v > 0 such that u+ v ≥ r0.

Proof. Let u, v ≥ 0 and define h : [0,∞) → R by

h(t) =
%
u1,λ + tu+ 1

&r+1%
v1,λ + tv + 1

&s+1
.

Then, by mean value theorem, there exist ξ ∈ (0, 1) such that h(1)− h(0) = h′(ξ). Thus

F
%
u1,λ + u, v1,λ + v

&
− F

%
u1,λ, v1,λ

&
= h(1)− h(0) = h′(ξ)

= (r + 1)
/
u1,λ + ξu+ 1

0r/
v1,λ + ξv + 1

0s+1

u+ (s+ 1)
/
u1,λ + ξu+ 1

0r+1/
v1,λ + ξv + 1

0s

v

> (r + 1)
/
u1,λ + 1

0r/
v1,λ + 1

0s+1

u+ (s+ 1)
/
u1,λ + 1

0r+1/
v1,λ + 1

0s

v.

It follows that G(x, u, v) > 0 for all x ∈ RN and every u, v ≥ 0.
On the other hand, since we are looking for θ > 2, and since f1

%
u1,λ, v1,λ

&
u+f2

%
u1,λ, v1,λ

&
v >

0 to prove (3.2.3), it is sufficient to show

f1
%
u1,λ + u, v1,λ + v

&
u+ f2

%
u1,λ + u, v1,λ + v

&
v

F
%
u1,λ + u, v1,λ + v

&
− F

%
u1,λ, v1,λ

& ≥ θ. (3.2.4)

for all x ∈ RN and every u, v > 0 such that u + v ≥ r0. For this purpose, we need to verify
that there exists θ ∈

%
2, 2∗

&
such that

lim inf
u+v→+∞

h(x, u, v) ≥ θ. (3.2.5)

where

h(x, u, v) :=
(r + 1)u

zλ
+

(s+ 1)v

wλ

,
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with zλ = u1,λ + u+ 1 and wλ = v1,λ + v + 1. Indeed, by (3.1.5) there exists a constant c > 0
such that the functions u1,λ, v1,λ are bounded by c. Then we have

h(x, u, v) ≥ min{r + 1, s+ 1}
+

u

zλ
+

v

wλ

,

≥ min{r + 1, s+ 1}
+

u

u+ v + c̄
+

v

u+ v + c̄

,

= min{r + 1, s+ 1}
+

u+ v

u+ v + c̄

,

→ min{r + 1, s+ 1}, as u+ v → ∞,

where c̄ = c+1. Therefore, there is θ ∈
%
2,min{r+1, s+1}

&
verifying (3.2.5). So for u, v > 0

and x ∈ RN , we have

f1(u1,λ + u, v1,λ + v)u+ f2(u1,λ + u, v1,λ + v)v

F (u1,λ + u, v1,λ + v)− F (u1,λ, v1,λ)
=

(r + 1)zrλw
s+1
λ u+ (s+ 1)zr+1

λ ws
λv

zr+1
λ ws+1

λ −
%
u1,λ + 1

&r+1%
v1,λ + 1

&s+1

≥ (r + 1)zrλw
s+1
λ u+ (s+ 1)zr+1

λ ws
λv

zr+1
λ ws+1

λ

=
(r + 1)u

zλ
+

(s+ 1)v

wλ

= h(x, u, v) ≥ θ for u+ v ≈ ∞.

This concludes the proof.

Lemma 3.2.4. Let θ ∈ (2, 2∗). Then, there exists r1 > 0 small enough and C > 0 such that

uf(x, u, v) + vg(x, u, v)− θG(x, u, v) ≥ −C
%
u2 + v2

&

for all x ∈ RN and every u, v > 0 such that u+ v ≤ r1.

Proof. Let x ∈ RN , u, v > 0 and zλ, wλ as in the previous lemma. Note that

F (u1,λ + u, v1,λ + v)− F
%
u1,λ, v1,λ

&
= zr+1

λ ws+1
λ −

%
u1,λ + 1

&r+1%
v1,λ + 1

&s+1

≤ (r + 1)zrλw
s+1
λ u+ (s+ 1)ws

λ

%
u1,λ + 1

&r+1
v.

This implies that there exist C > 0 and r1 > 0 small enough such that

uf(x, u, v) + vg(x, u, v)− θG(x, u, v) ≥ −θG(x, u, v)

≥ −C(u2 + v2),

for all x ∈ RN and u+ v ≤ r1.

The following lemma is a simple consequence of the definition of G.
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Lemma 3.2.5. Let θ ∈
%
2, 2∗

&
. Then, there exists r2 > 0 such that

G(x, u, u) ≥ uθ, for all x ∈ RN and u ≥ r2.

The next lemma says that Jλ has the Mountain Pass geometry.

Lemma 3.2.6.

i) There exist λ∗
1 > 0 and r0, a > 0 such that

Jλ(u, v) ≥ a if ,(u, v), = r0 for every λ ∈ (0,λ∗
1).

ii) There exists (u, v) ∈ E with

,(u, v), > r0 and Jλ(u, v) < 0.

Proof.

i) By Proposition 1.2.3 and (3.2.2), there exists C > 0 such that

Jλ(u, v) =
1

2
,(u, v),2 − λ

ˆ

RN

ρ(x)G(x, u, v)dx

≥ 1

2
,(u, v),2 − λC

%
,(u, v),2 + ,(u, v),r+s+2

&
.

Then there exists 0 < λ∗
1 < λ∗ such that for every 0 < λ < λ∗

1 we have that if ,(u, v), = λ,
then

Jλ(u, v) ≥ λ2

+
1

2
− 2λC

,
:= aλ > 0.

ii) This is a consequence of Lemma 3.2.5.

Lemma 3.2.7. There exists λ∗
2 > 0 enough small such that the functional Jλ satisfies the

Palais-Smale condition for every λ ∈ (0,λ∗
2).

Proof. Let (un, vn) ⊂ E be a Palais-Smale sequence at level c. By Lemma 3.2.2 and Propo-
sition 1.2.3, for n sufficiently large, we have

c+
o(1)

θ
,(un, vn), = Jλ(un, vn)−

1

θ
J ′
λ(un, vn)(un, vn)

=
/1
2
− 1

θ

0
,(un, vn),2 +

λ

θ

ˆ

RN

ρ(x)
/
f(x, un, vn)un + g(x, un, vn)vn − θG(x, un, vn)

0
dx

≥
/1
2
− 1

θ

0
,(un, vn),2 −

λC

θ

ˆ

RN

ρ(x)
%
u2
n + v2n

&
dx

≥
/1
2
− 1

θ

0
,(un, vn),2 −

λC

θ

/
,un,2H1

V (RN ) + ,vn,2H1
V (RN )

0

=

+
1

2
− 1

θ
− λC

θ

,
,(un, vn),2.
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Since θ ∈
%
2, 2∗

&
, there exists 0 < λ∗

2 < λ∗
1 such that for every 0 < λ < λ∗

2 we have that

+
1

2
− 1

θ
− λC

θ

,
> 0,

which implies that the sequence (un, vn) is bounded in E. Then, through standard argument
and Proposition 1.2.3, there is a subsequence still denoted by (un, vn) that converges in
E.

Finally, By Lemma 3.2.1, Lemma 3.2.6 and Lemma 3.2.7 there exists 0 < λ∗∗ ≤ λ∗

such that the functional Jλ is well defined and satisfies the conditions of the Mountain Pass
Theorem for every λ ∈ (0,λ∗∗). Therefore, there exists a (u, v) solution of (GSλ

A) for any
λ ∈ (0,λ∗∗), which allows us to conclude the proof of Theorem 4 part ii).
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3.3 The Hamiltonian system

Theorem 1 gives us the existence of Λ > 0 such that Hamiltonian System (HSλ) has at least
one bounded positive solution for every 0 < λ < Λ.
On the other hand, if (u, v) were a bounded positive solution of (HSλ), then we would have

ˆ

RN

%
∇u∇ϕ+ V (x)uϕ

&
dx ≥ λ

ˆ

BR

ρ(x)vϕdx

and
ˆ

RN

%
∇v∇ϕ+ V (x)vϕ

&
dx ≥ λ

ˆ

BR

ρ(x)uϕdx,

for all ϕ ∈ H1
V (RN). Let ϕ1 the positive eigenfunction associated to the first eigenvalue λ1 of

the Schrödinger equation
)

−∆ϕ1 + V (x)ϕ1 = λ1ρ(x)ϕ1 in BR

ϕ1 = 0 on ∂BR.

In a similar way as in (3.1.7), we have
ˆ

RN

%
∇u∇ϕ1 + V (x)uϕ1

&
dx ≤ λ1

ˆ

BR

ρ(x)uϕ1dx

and
ˆ

RN

%
∇v∇ϕ1 + V (x)vϕ1

&
dx ≤ λ1

ˆ

BR

ρ(x)vϕ1dx,

These four inequalities would imply that

λ

ˆ

BR

ρ(x)
%
u+ v

&
ϕ1dx ≤ λ1

ˆ

BR

ρ(x)
%
u+ v

&
ϕ1dx.

Since u, v, ρ > 0 and ϕ1 > 0 we have λ ≤ λ1. Therefore using an argument similar to the
Lemma 3.1.3 the proof of Theorem 5 part i) is complete.

Now, let R > 0 be, by choosing γ > q such that pγ < 1 is possible to find M > 1 large
enough such that )

M ≥ λ(Mγ)UV2)∞ + 1)p

Mγ ≥ µ(M)UV1)∞ + 1)q,

where UV1 , UV2 is a bounded positive solution of (3.1.1). Thus, the couple (MUV1 ,M
γUV2) is

an upper solution of (SR,λ,µ) for every λ, µ > 0, and since (u, v) = (0, 0) is a lower solution of
(SR,λ,µ), by virtue Lemma 1.6.2 and, following the argument in Lemma 3.1.1 and Theorem
1, we obtain existence of at least one bounded positive solution of Hamiltonian System (HSλ)
for all λ > 0, which proves Theorem 5 part ii).

Finally, in order to prove Theorem 5 part iii), without loss of generality we will assume
that p > 1 and let (u1,λ, v1,λ) be a bounded positive solution of (HSλ) given by Theorem 5
i). In a similar way as in a gradient system, to show the existence of a second solution for the
System (HSλ) we will show the existence of at least one solution for the following auxiliary
system.
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)
−∆u + V (x)u = λρ(x)f(x, v) in RN

−∆v + V (x)v = λρ(x)g(x, u) in RN ,
(HSλ

A)

with
f(x, v) := h1(v1,λ + v+)− h1(v1,λ), g(x, u) := h2(u1,λ + u+)− h2(u1,λ)

and

h1(v) =
∂H
∂v

, h2(u) =
∂H
∂u

,

where H : R2 → R is given by

H(u, v) =
(u+ 1)q+1

q + 1
+

(v + 1)p+1

p+ 1
.

Define H : RN+2 → R by

H(x, u, v) = H(u1,λ + u+, v1,λ + v+)−H(u1,λ, v1,λ)−
%
h1(v1,λ)v

+ + h2(u1,λ)u
+
&
.

Then
∂H

∂v
= f(x, v) and

∂H

∂u
= g(x, u).

This shows that the auxiliary problem (HSλ
A) is also a Hamiltonian system.

To show the existence of a nontrivial solution of the auxiliary problem (HSλ
A), we will use

the technique developed in [42] (see also [32]), in which the authors show the existence of at
least one positive solution for a Hamiltonian system of the form:

)
−∆u + V (x)u = ρ1(x)f(v) in RN

−∆v + V (x)v = ρ2(x)g(u) in RN ,

Since the nonlinearities of our system (HSλ
A) are not of separate variables, we cannot directly

use their argument. However, by taking λ small enough, we can adapt their argument for our
case. In this line, we will use the linking result due to Li and Szulkin [31].

Now, we will prove that the energy functional associated to the auxiliary system (HSλ
A)

given by

Iλ(u, v) =

ˆ

RN

/
∇u∇v + V (x)uv

0
dx− λ

ˆ

RN

ρ(x)H(x, u, v)dx

is well defined on E. In fact, the following result holds.

Lemma 3.3.1. The functional Iλ associated to (HSλ
A) is well defined in E.

Proof. Let u, v ≥ 0. The inequality (Itl) in the Lemma 3.2.1 proof, with l = 0 tells us:

%
a+ b

&t − at ≤
)

t(a+ b)t−1b for all b ≥ 0, a > 0 if t ≥ 1

tat−1b for all b ≥ 0, a > 0 if 0 < t < 1.

Using this inequality twice, for 0 < q ≤ 1, we see that

zq+1
λ − (u1,λ + 1)q+1

q + 1
− (u1,λ + 1)qu ≤

%
zqλ − (u1,λ + 1)q

&
u

≤ q(v1,λ + ξu+ 1)q−1u2.

≤ u2, for all u ≥ 0.
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Similarly, if q > 1, we have

zq+1
λ − (u1,λ + 1)q+1

q + 1
− (u1,λ + 1)qu ≤

%
zqλ − (u1,λ + 1)q

&
u

≤ qzq−1
λ u2.

Thus, using the fact that v1,λ is bounded, we see that there exists C1 > 0 such that

zq+1
λ − (u1,λ + 1)q+1

q + 1
− (u1,λ + 1)qu ≤

)
u2 for all u ≥ 0 and 0 < q ≤ 1

C1u
2 for u ≈ 0 and q > 1.

In the similar way, since u1,λ is bounded, there exists C2 > 0 such that

wp+1
λ − (v1,λ + 1)p+1

p+ 1
− (v1,λ + 1)pv ≤ C2(v

2 + vp+1), for all v ≥ 0,

where zλ = u1,λ + u + 1 and wλ = v1,λ + v + 1. Thus, from definition of H we obtain the
existence of C > 0 such that

H(x, u, v) ≤
)

C(u2 + v2 + vp+1) if 0 < q ≤ 1

C(u2 + v2 + uq+1 + vp+1) if q > 1,
(3.3.2)

for all x ∈ RN and u, v ≥ 0. Since p > 1 and p, q < 2∗ − 1, by Proposition 1.2.3, the
functional Iλ is well defined and Iλ ∈ C1

%
E,R

&
with Fréchet derivate given by

I ′λ(u, v)(ψ,φ) = 〈(u, v), (φ,ψ)〉 − λ

ˆ

RN

ρ(x)
/
f(x, v)φ+ g(x, u)ψ

0
dx

for any (u, v), (ψ,φ) ∈ E.

The next result says that f and g are superlinear at infinity.

Lemma 3.3.2. If q > 1, then the following limits hold

lim
v→∞

f(x, v)

v
= ∞ = lim

u→∞

g(x, u)

u
for every x ∈ RN .

Proof. It is a consequence of the assumption p, q > 1.

In what follows we consider H1, H2 : RN+1 → R given by

H1(x, v) =
wp+1

λ −
%
v1,λ + 1

&p+1

(p+ 1)
−
%
v1,λ + 1

&p
v+

and

H2(x, u) =
zq+1
λ −

%
u1,λ + 1

0q+1

(q + 1)
−

%
u1,λ + 1

&q
u+,

where zλ = u1,λ + u+ + 1 and wλ = v1,λ + v+ + 1.
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Remark 3.3.1. From definition of H1 and H2 we have

H(x, u, v) = H(u1,λ + u+, v1,λ + v+)−H(u1,λ, v1,λ)−
%
h1(v1,λ)v

+ + h2(u1,λ)u
+
&

= H1(x, v) +H2(x, u).

Moreover defining l : [0,∞) → R by

l(t) = (v1,λ + tv+ + 1)p+1,

there exist ξ ∈ (0, 1) such that

(v1,λ + v+ + 1)p+1 − (v1,λ + 1)p+1 = l(1)− l(0)

= l′(ξ) = (p+ 1)(v1,λ + ξv+ + 1)pv+

≥ (p+ 1)(v1,λ + 1)pv+.

This implies that H1(x, v) ≥ 0 for every x ∈ RN and v ∈ R. Similarly H2(x, u) ≥ 0 for every
x ∈ RN and u ∈ R. Therefore

H(x, u, v) ≥ 0 for all x ∈ RN and every u, v ∈ R.

The following lemma holds.

Lemma 3.3.3. If q > 1, then we have

lim
v→∞

H1(x, v)

v2
= ∞ = lim

u→∞

H2(x, u)

u2
for every x ∈ RN .

The following result is crucial in our approach.

Lemma 3.3.4. If q > 1, then there exist constants t1, t2 ∈
%
N
2
, N

&
, C0 > 0 and R0 > 0 such

that

C0f(x, v)
t1 ≤ vt1

+
f(x, v)v

2
−H1(x, v)

,
and C0g(x, u)

t2 ≤ ut2

+
g(x, u)u

2
−H2(x, u)

,
,

for all x ∈ RN and u, v ≥ R0.

Proof. Let x ∈ RN and u, v ≥ 0. We have

f(x, v)v

2
−H1(x, v) =

wp
λv + (v1,λ + 1)pv

2
− wp+1

λ − (v1,λ + 1)p+1

p+ 1

≈ p− 1

2(p+ 1)
vp+1 for v ≈ ∞.

On the other hand,

f(x, v)t1 =
%
wp

λ − (v1,λ + 1)p
&t1

≈ vpt1 for v ≈ ∞.
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Thus, for sufficiently large values of v the following inequality holds

vt1
+
f(x, v)v

2
−H1(x, v)

,

f(x, v)t1
≥ C0 > 0

if and only if
(p− 1)

2(p+ 1)

vp+t1+1

vpt1
≥ C0 > 0

or equivalently

t1 ≤
p+ 1

p− 1
.

Since 1 < p < 2∗ − 1 we see that
N

2
≤ p+ 1

p− 1
.

Therefore we can choose t1 ∈
%
N
2
, N

&
. The existence of t2 ∈

%
N
2
, N

&
follows analogously. This

concludes the proof of the lemma.

As a consequence of Lemma 3.3.2, and Lemma 3.3.4 we have

Lemma 3.3.5. If q > 1, then we have

lim
v→∞

+
f(x, v)v

2
−H1(x, v)

,
= ∞ = lim

u→∞

+
f(x, u)u

2
−H2(x, u)

,
for every x ∈ RN .

Remark 3.3.2. For the purpose of applying Theorem 1.6.7 we note that we can decompose
E = E+ ⊕ E−, where

E+ := {(u, u) ; u ∈ H1
V (RN)}, E− := {(u,−u) ; u ∈ H1

V (RN)}

and both spaces are infinite dimensional.
Also, one can easily check that for any z = (u, v) ∈ E, z = z+ + z− with

z+ =

+
u+ v

2
,
u+ v

2

,
, z− =

+
u− v

2
,−u− v

2

,

and
ˆ

RN

(∇u∇v + V (x)uv)dx =
1

2

%
,z+,2 − ,z−,2

&
.

Then we can write

Iλ(u, v) =
1

2

%
,z+,2 − ,z−,2

&
− Φ(u, v)

with Φ(u, v) = λ

ˆ

RN

ρ(x)H(x, u, v)dx.

Lemma 3.3.6.

i) There exists λ∗
1 > 0 small enough and r0, a > 0, such that Iλ|Nr ≥ a for every λ ∈ (0,λ∗

1).

ii) For r0 given in i) and any z0 = (u0, u0) ∈ E+ \ {0} with ,z0, = 1, there is R > r0 such
that Iλ|∂MR,z0

≤ 0.
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Proof.

i) For any z ∈ Nr0 , there exists u ∈ H1
V (RN) with z = (u, u) and ,z, = r0. Then

Iλ(z) = ,z,2 − λ

ˆ

RN

ρ(x)H(x, u, u)dx

Therefore, from (3.3.2) and Proposition 1.2.3, we see that there are 0 < λ∗
1 < λ∗ and

C1 > 0 such that for every 0 < λ < λ∗
1, if ,z, = r0 = λ, then

Iλ(z) ≥ λ2 (1− 2λC1) := aλ > 0.

ii) Let z ∈ ∂MR, then z = z− + tz0 with ,z, = R, t > 0 or ,z, < R, t = 0.

a) First suppose t = 0. Then, we have z ∈ E−, that is, z = (u,−u) and

Iλ(z) = Iλ(u,−u) = −1

2
,z−,2 − λ

ˆ

RN

ρ(x)H(x, u,−u)dx ≤ 0

since ρ(x) > 0 and H(x, u,−u) ≥ 0, for any x ∈ RN , u ∈ R.
b) Now, assume that t > 0. Let us suppose by contradiction, that there is a sequence

(zn) ⊂ ∂MRn , with

zn = tnz0 + z−n , tn > 0, ,z0, = 1 and ,zn, = Rn → ∞

such that Iλ(zn) > 0, i.e., if zn = (un, vn) = (tnu0 + φn, tnu0 − φn), then

Iλ(zn) = Iλ(un, vn) =
1

2

/
t2n,z0,2 − ,z−n ,2

0
− λ

ˆ

RN

ρ(x)H(x, un, vn)dx > 0.

Denote δn =
tn

,zn,
and w−

n =
z−n
,zn,

. Then

Iλ(zn)

,zn,2
=

1

2

/
δ2n − ,w−

n ,2
0
− λ

ˆ

RN

ρ(x)
H(x, un, vn)

,zn,2
dx > 0. (3.3.3)

Since ρ(x) > 0 and G(x, u, v) ≥ 0 for any x ∈ RN and u, v ∈ R, we have

δn ≥ ,w−
n ,. (3.3.4)

Moreover, notice that

δ2n + ,w−
n ,2 =

t2n,z0,2
,zn,2

+
,z−n ,2
,zn,2

= 1. (3.3.5)

And then it follows from (3.3.4) and (3.3.5) that

1√
2
≤ δn ≤ 1 (3.3.6)

and w−
n is bounded. Going to a subsequence, we may assume that δn → δ for some

δ > 0 and w−
n ⇀ w− = (φ,−φ) in E as n → ∞.
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Thus
t2n

,zn,2
→ δ2 > 0 and since ,zn, → ∞ it follows that tn → ∞.

Moreover

un

,zn,
=

tnu0 + φn

,zn,
⇀ δu0 + φ and

vn
,zn,

=
tnu0 − φn

,zn,
⇀ δu0 − φ

in E. Hence, by Proposition 1.2.3 we may assume, up to a subsequence that

un(x)

,zn,
=

tnu0(x) + φn(x)

,zn,
→ δu0(x) + φ(x) a.e. in RN

and
vn(x)

,zn,
=

tnu0(x)− φn(x)

,zn,
→ δu0(x)− φ(x) a.e. in RN

Let us denote A1 = {x ∈ RN ; δu0(x) + φ(x) ∕= 0}. We have

lim
n→∞

tnu0(x) + φn(x)

,zn,
= δu0(x) + φ(x) ∕= 0, a.e. in A1

which means that

un(x) = tnu0(x) + φn(x) → ∞ a.e. in A1.

Analogously, if we denote A2 = {x ∈ RN ; δu0(x)− φ(x) ∕= 0}, then we have

vn(x) = tnu0(x)− φn(x) → ∞ a.e. in A2.

On the other hand, we notice that

lim
u→∞

H2(x, u)

u2
=

)
0 if 0 < q < 1

1
2

if q = 1.
(3.3.7)

From Lemma 3.3.3, (3.3.3), (3.3.5), (3.3.7), using Fatou’s lemma and the fact
that H1, H2 are positive functions, we obtain

0 ≤ 1

2

/
δ2 − ,w−,2

0
− λ lim inf

n→∞

ˆ

RN

ρ(x)
H(x, un, vn)

,zn,2
dx

=
1

2

/
δ2 − ,w−,2

0
− λ lim inf

n→∞

ˆ

RN

ρ(x)
H1(x, vn) +H2(x, un)

,zn,2
dx

=
1

2

/
δ2 − ,w−,2

0
− λ lim inf

n→∞

ˆ

RN

ρ(x)

'
H1(x, vn)

v2n

v2n
,zn,2

+
H2(x, un)

u2
n

u2
n

,zn,2

(
dx

≤ 1

2

/
δ2 − ,w−,2

0
− λ

ˆ

RN

ρ(x) lim inf
n→∞

'
H1(x, vn)

v2n

v2n
,zn,2

+
H2(x, un)

u2
n

u2
n

,zn,2

(
dx

=
1

2

/
δ2 − ,w−,2

0
− λ

ˆ

A1

ρ(x) lim inf
n→∞

'
H1(x, vn)

v2n

v2n
,zn,2

(
dx

− λ

ˆ

A2

ρ(x) lim inf
n→∞

'
H2(x, un)

u2
n

u2
n

,zn,2

(
dx = −∞,
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which is a contradiction and the lemma is proved.

The following result is a key point in our argument to obtain a second solution to the
Hamiltonian system.

Lemma 3.3.7. Let (zn) ⊂ E is a (C)c-sequence of Iλ. Then (zn) is bounded in E, for suffi-
ciently small values of λ.

Proof. Here taking sufficiently small λ we managed to adapt the proof of [42, Lemma 3.2]. In
fact, let (zn) ⊂ E be a (C)c-sequence of Iλ. Then

Iλ(zn) → c and I ′λ(zn)zn → 0. (3.3.8)

We denote zn = (un, vn). We may assume, by contradiction, that ,zn, → ∞. We set

wn =
zn
,zn,

=

+
un

,zn,
,

vn
,zn,

,
:= (w1

n, w
2
n).

Then (wn) is bounded in E with ,wn, = 1. Notice that

I ′λ(zn)(z
+
n − z−n ) = I ′λ(un, vn)(vn, un) = ,zn,2 − λ

ˆ

RN

ρ(x)
/
f(x, vn)un + g(x, un)vn

0
dx.

Thus
I ′λ(zn)(z

+
n − z−n )

,zn,2
= 1− λ

ˆ

RN

ρ(x)

+
f(x, vn)un

,zn,2
+

g(x, un)vn
,zn,2

,
dx. (3.3.9)

Since ,zn, = ,z+n − z−n ,, it follows by Cerami condition and (3.3.9) that

lim
n→∞

λ

ˆ

RN

ρ(x)

+
f(x, vn)un

,zn,2
+

g(x, un)vn
,zn,2

,
dx = 1. (3.3.10)

Let 0 ≤ a < b ≤ +∞ and define

An(a, b) = {x ∈ RN ; a ≤ vn(x) < b}.

Now we will work with this set.

i) Using the definition of f , there is a > 0 small enough such that f(x, v) ≤ Cv for each
0 ≤ v ≤ a, uniformly in x ∈ RN , then, for any n ∈ N, we have

ˆ

An(0,a)

ρ(x)
f(x, vn)un

,zn,2
dx ≤ C

ˆ

An(0,a)

ρ(x)
vnun

,zn,2
dx

= C

ˆ

An(0,a)

ρ(x)w1
nw

2
ndx

≤ C

+
ˆ

An(0,a)

ρ(x)|w1
n|2dx

, 1
2
+
ˆ

An(0,a)

ρ(x)|w2
n|2dx

, 1
2

≤ C,w1
n,H1

V (RN ),w2
n,H1

V (RN )

≤ C.
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ii) By Lemma 3.3.4, we have

f(x, v)v

2
−H1(x, v) ≈

p− 1

2(p+ 1)
vp+1 for v ≈ ∞ and every x ∈ RN . (3.3.11)

Thus, and (3.3.8) implies that for n and b sufficiently large

c+ o(1) = Iλ(zn)−
1

2
I ′λ(zn)zn ≥ λ

ˆ

An(b,+∞)

ρ(x)

+
f(x, vn)vn

2
−H1(x, vn)

,
dx

≥ λ inf
|v|≥b

+
f(x, v)v

2
−H1(x, v)

,
ˆ

An(b,+∞)

ρ(x)dx.

Again using (3.3.11) it follows that, for n sufficiently large,
ˆ

An(b,+∞)

ρ(x)dx → 0, as b → +∞.

Let t1 ∈
%
N
2
, N

&
given by Lemma 3.3.4. Using the fact that ,w1

n,H1
V (RN ) ≤ 1, for

s1 =
1

1
2
+ 1

N
− 1

t1

and n sufficiently large, we obtain

ˆ

An(b,+∞)

ρ(x)|w1
n|s1dx =

ˆ

An(b,+∞)

ρ
2∗−s1

2∗ (x)ρ
s1
2∗ (x)|w1

n|s1dx

≤
+
ˆ

An(b,+∞)

ρ(x)dx

, 2∗−s1
2∗

+
ˆ

An(b,+∞)

ρ(x)|w1
n|2

∗
dx

, s1
2∗

≤ C

+
ˆ

An(b,+∞)

ρ(x)dx

, 2∗−s1
2∗

→ 0, as b → +∞.

Thus, for n sufficiently large, using generalized Hölder’s inequality we have
ˆ

An(b,+∞)

ρ(x)
f(x, vn)un

,zn,2
dx =

ˆ

An(b,+∞)

ρ
1
t1 (x)ρ

1
s1 (x)ρ

1
2∗ (x)

f(x, vn)

vn

vn
,zn,

un

,zn,
dx

=

ˆ

An(b,+∞)

ρ
1
τ1 (x)ρ

1
s1 (x)ρ

1
2∗ (x)

f(x, vn)

vn
w1

nw
2
ndx

≤
+
ˆ

An(b,+∞)

ρ(x)

+
|f(x, vn)|

|vn|

,τ1

dx

, 1
τ1

·
+
ˆ

An(b,+∞)

ρ(x)|w1
n|s1dx

, 1
s1

+
ˆ

An(b,+∞)

ρ(x)|w2
n|2

∗
dx

, 1
2∗

≤ C

+
ˆ

An(b,+∞)

ρ(x)

+
f(x, vn)vn

2
−H1(x, vn)

,
dx

, 1
τ1

·
+
ˆ

An(b,+∞)

ρ(x)|w1
n|s1dx

, 1
s1

≤ C

+
ˆ

An(b,+∞)

ρ(x)|w1
n|s1dx

, 1
s1

→ 0, as b → +∞.
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iii) Note that there is a constant C > 0 independent of n, but depending on a and b, such
that

|f(x, vn)| ≤ C|vn|, for all x ∈ An(a, b). (3.3.13)

On the other hand, from the hypotheses on V and ρ, we have

V (x)

ρ(x)
≥

a
%
1 + |x|β

&

k
%
1 + |x|α

& , α ∈ (0, 2], α + β > 4.

This implies that there is a R0 > 0 sufficiently large such

f(x, v)

v
≤ V (x)

ρ(x)
, for v ∈ (a, b) and |x| > R0.

Thus, by (3.3.13) we have

ˆ

An(a,b)
|x|>R0

ρ(x)
f(x, vn)un

,zn,2
dx =

ˆ

An(a,b)
|x|>R0

ρ(x)
f(x, vn)

vn
w2

nw
1
ndx

≤
ˆ

An(a,b)
|x|>R0

ηV (x)w2
nw

1
ndx ≤ λ

ˆ

RN

ηV (x)w2
nw

1
ndx

≤
+
ˆ

RN

V (x)|w1
n|2dx

, 1
2
+
ˆ

RN

V (x)|w2
n|2dx

, 1
2

≤ ,w1
n,H1

V (RN ),w2
n,H1

V (RN ) ≤ 1 ∀n ∈ N.

Furthermore, we see that

ˆ

An(a,b)
|x|≤R0

ρ(x)|w2
n|2dx =

1

,zn,2

ˆ

An(a,b)
|x|≤R0

ρ(x)v2ndx ≤ b2

,zn,2

ˆ

An(a,b)
|x|≤R0

ρ(x)dx → 0

as n → ∞. Consequently, we have

ˆ

An(a,b)
|x|≤R0

ρ(x)
f(x, vn)un

,zn,2
dx =

ˆ

An(a,b)
|x|≤R0

ρ(x)
f(x, vn)w

1
n

,zn,
dx ≤ C

ˆ

An(a,b)
|x|≤R0

ρ(x)
vnw

1
n

,zn,
dx

= C

ˆ

An(a,b)
|x|≤R0

ρ(x)w1
nw

2
ndx

≤ C,w1
n,H1

V (RN )

=

>
ˆ

An(a,b)
|x|≤R0

ρ(x)|w2
n|2dx

?

@
1/2

→ 0.

Therefore we obtain

ˆ

An(a,b)

ρ(x)
f(x, vn)un

,zn,2
dx ≤ 1 for n sufficiently large.
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Finally by i) ii) and iii) we conclude that

ˆ

RN

ρ(x)
f(x, vn)un

,zn,2
dx ≤ 1 + C for n sufficiently large.

If q > 1, we can use a similar argument to prove

ˆ

RN

ρ(x)
g(x, un)vn
,zn,2

dx ≤ 1 + C for n sufficiently large.

Now, suppose 0 < q ≤ 1. Since g(x, u) ≤ u for each u ≥ 0, uniformly in x ∈ RN , proceeding as
in the case i) we have that

ˆ

RN

ρ(x)
g(x, un)vn
,zn,2

dx ≤
ˆ

RN

ρ(x)
vnun

,zn,2
dx ≤ C for all n ∈ N.

Therefore, we get
ˆ

RN

ρ(x)

+
f(x, vn)un

,zn,2
+

g(x, un)vn
,zn,2

,
dx ≤ 2(1 + C) for n sufficiently large.

If we consider 2
%
1 + C

&
λ < 1, this fact contradicts (3.3.10). Therefore, (zn) is bounded in E

and the lemma is proved.

Lemma 3.3.8. Let (un, vn) ⊂ E be a bounded sequence such that (un, vn) ⇀ (u, v) in E. Then
ˆ

RN

ρ(x)f(x, vn)undx →
ˆ

RN

ρ(x)f(x, v)udx (3.3.14)

and
ˆ

RN

ρ(x)g(x, un)vndx →
ˆ

RN

ρ(x)g(x, u)vdx. (3.3.15)

Proof. As in the Lemma 3.3.1, since p > 1 and p, q < 2∗ − 1, there exists C > 0 such that

f(x, v) ≤ C(v + vp) and g(x, u) ≤
)

u if 0 < q ≤ 1

C(u+ uq) if q > 1,

for all x ∈ RN and every u, v ≥ 0. So, using Proposition 1.2.3 and standard arguments we
get (3.3.14) and (3.3.15).

To finish this section, we show the existence of a solution of System (HSλ
A). As we mentioned

earlier, for this, we will use Theorem 1.6.7. Indeed, by Remark 3.3.2 for z = (u, v) ∈ E we
have

Iλ(z) =
1

2

%
,z+,2 − ,z−,2

&
− Φ(z)

with

Φ(z) = Φ(u, v) = λ

ˆ

RN

ρ(x)H(x, u, v)dx.

We notice that Φ ∈ C1
%
E,R

&
and Φ(z) ≥ 0. By Fatou’s lemma Φ is weakly lower semicontinu-

ous and Φ′ is weakly sequentially continuous. Moreover, Lemma 3.3.6, gives us the existence
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of 0 < λ∗∗ ≤ λ∗ small enough, so that for every λ ∈ (0,λ∗∗), there are r0 > 0 and a > 0, such
that Iλ|Nr0

≥ a. Also, for such r0, there exist R > r0 and z0 ∈ E+ \ {0} with ,z0, = 1 such
that Iλ|∂MR,z0

≤ 0.
Thus, by Theorem 1.6.7 there exists a (C)c-sequence (zn) ⊂ E for Iλ which is bounded in E
by Lemma 3.3.7. Then, up to a subsequence, we may assume that zn ⇀ z in E.

We denote zn = (un, vn) and z = (u, v). By Lemma 3.3.8 and since I ′λ(zn)(zn) → 0, as
n → ∞, we have

lim
n→∞

,zn,2 = λ lim
n→∞

'
ˆ

RN

ρ(x)f(x, vn)undx+

ˆ

RN

ρ(x)g(x, un)vndx

(

= λ

'
ˆ

RN

ρ(x)f(x, v)udx+

ˆ

RN

ρ(x)g(x, u)vdx

(
.

Also, using that I ′λ(un, vn)(v, u) → 0, as n → ∞, we have

,z,2 = ,u,2H1
V (RN ) + ,v,2H1

V (RN )

= lim
n→∞

/
〈un, u〉H1

V (RN ) + 〈vn, v〉H1
V (RN )

0

= lim
n→∞

ˆ

RN

/
∇un∇u+ V (x)unu+∇vn∇v + V (x)vnv

0
dx

= λ lim
n→∞

'
ˆ

RN

ρ(x)f(x, vn)udx+

ˆ

RN

ρ(x)g(x, un)vdx

(

= λ

'
ˆ

RN

ρ(x)f(x, v)udx+

ˆ

RN

ρ(x)g(x, u)vdx

(
.

Hence
lim
n→∞

,zn,2 = ,z,2.

Which shows that
zn → z in E.

Therefore, z = (u, v) is a nontrivial solution of problem (HSλ
A) with Iλ(u, v) = c ≥ a > 0.

Moreover, by maximum principle u > 0 and v > 0.
Therefore (u1,λ + u, v1,λ + v) is a positive solution of System (HSλ). This concludes the proof
of Theorem 5 part iii).
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3.4 Some nonhomogeneous elliptic system

To conclude this chapter, we give an application of Theorem 1. For this purpose, let us
introduce the following System, which, in part, has motivated our study :

!
$"

$#

−∆z = ρ1(x)z
rwp in RN

−∆w = ρ2(x)z
qws in RN ,

z(x) → c1, w(x) → c2 as |x| → ∞
(3.4.1)

where ρi satisfies (Hρ) with β > 2 with c1, c2 ≥ 0 to be fixed later. Note that the solutions of
this System do not belong to any Sobolev space, so it is difficult to solve directly. However, as
we will see in the last section, a strategy involving Theorem 1 allows us to find a solution of
System (3.4.1), which apparently is the only way to solve it.

We claim that system (3.4.1) has a bounded positive solution (z̄, w̄) in the following two
cases:

i) p, q > 0 and r, s > 1.

ii) r = s = 0 and 0 < pq < 1.

In fact, for λ, µ > 0 sufficiently small, Theorem 1 guarantees the existence of a positive
bounded solution (ũ, ṽ) of the system

!
$"

$#

−∆u = λρ1(x)(u+ 1)r(v + 1)p in RN

−∆v = µρ2(x)(u+ 1)q(v + 1)s in RN ,

u(x), v(x) → 0 as |x| → ∞.

(3.4.2)

Now, we will find a condition for c1, c2 ≥ 0 such that the pair (z̄, w̄) := (c1(ũ + 1), c2(ṽ + 1))
be a bounded solution of System (3.4.2). Indeed, with respect to case i) we have

−∆z̄ = −c1∆ũ = c1λρ1(x)(ũ+ 1)r(ṽ + 1)p = c1−r
1 c−p

2 λρ1(x)z̄
rw̄p

and
−∆w̄ = −c2∆ṽ = c2µρ2(x)(ũ+ 1)q(ṽ + 1)s = c−q

1 c1−s
2 µρ2(x)z̄

rw̄p.

Thus for c1, c2 small enough we have λ = cr−1
1 cp2 < Λ and µ = cq1c

s−1
2 < Λ, and so System

(3.4.2) has a positive bounded solution.
Related to the ii), we choose γ > q such that pγ < 1, c1 = c and c2 = cγ. Then, similar to

case i) we see that

−∆z̄ = c1−pγλρ1(x)w̄
p and −∆w̄ = cγ−qµρ2(x)z̄

q.

Thus, λ = cpγ−1 and µ = cq−γ verify 0 < λ, µ < Λ for a sufficiently large c. Hence the pair
(z̄, w̄) is a bounded positive solution of System

!
$"

$#

−∆z = ρ1(x)w
p in RN

−∆w = ρ2(x)z
q in RN ,

z(x) → c, w(x) → cγ as |x| → ∞.

(3.4.3)

Finally, we would like to mention the paper [35], where this type of problems was studied with
c = 0 (see [35, Theorem 5.1]).



Chapter 4

The linear equation in the half space

In this Chapter, we will develop some results obtained, which are still under development,
in which we will give sufficient and necessary conditions to obtain the existence of bounded
solutions of Poisson’s equation in the half space:

−∆u = ρ(x) in RN
+ , (4.1)

where ρ ∈ L∞
loc

%
RN

+

&
, ρ(x) ≥ 0 and ρ not identically zero.

Our focus is on obtaining solutions of (4.1) that vanishing at infinity as follows

lim inf
|x|→∞

u(x) = 0 and lim inf
xN→0

u(x) = 0. (4.2)

For this purpose, we notice that if u ∈ C2(RN
+ ) solves the problem

)
−∆u = ρ(x) in RN

+

u = g on ∂RN
+ ,

for any continuous boundary values g, then u is given by

u(x) =

ˆ

RN
+

GRN
+
(x, y)ρ(y)dy − 2xN

nwN

ˆ

∂RN
+

g(y)

|x− y|N dS(y) ∀x ∈ RN
+ ,

where
GRN

+
(x, y) = Γ(x− y)− Γ(x− ỹ) for all x ∕= y in RN

+ ,

is the Green’s function in RN
+ . Therefore, we expect that

ˆ

RN
+

GRN
+
(x, y)ρ(y)dy ∀x ∈ RN

+ ,

will be a bounded solution of Problem (4.1).

87
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As we saw in the introduction, to obtain sufficient and necessary
conditions to obtain the existence of solutions of Problem (4.1), we
will use a monotonicity argument involving Green’s function in the
half space and the Green’s function in the balls Bn(an) = {x ∈ RN :
|x− an| < n}, where an = (0, . . . , 0, n) ∈ RN

+ , since the half space is
the infinite union of these balls:

RN
+ =

∞*

n=1

Bn(an).

For this, first we note that, for y ∈ B(a,R), if we define

φy(x) =

!
"

#
Γ

+
|y − a|

R

7777x− a− R2

|y − a|2 (y − a)

7777

,
if y ∕= a

Γ(R) if y = a,

where R > 0 and a ∈ RN . Then φy ∈ C2(B(a,R)) satisfies

)
∆φy(x) = 0 in B(a,R)

φy(x) = Γ(x− y) on ∂B(a,R).

Therefore Green’s function in B(a,R) is given by

GR(a)(x, y) = GR(x− a, y − a) for all x ∕= y in B(a,R),

where GR is the Green’s function in BR = BR(0) given by

GR(x, y) =

!
"

#
Γ(x− y)− Γ

+
|y|
R

7777x− R2

|y|2y
7777

,
if y ∕= 0

Γ(x)− Γ(R) if y = 0.

for all x ∕= y in BR.

Next, we begin by providing a relationship that exists between the Green’s function in
Bn(an) and the Green’s function in RN

+ .

Lemma 4.0.1. For each x ∈ RN
+ , the next limit hold:

lim
n→∞

GBn(an)(x, y) = Γ(x− y)− Γ(x− ỹ) for all y ∕= x in RN
+ . (4.3)

Proof. Fix x ∈ RN
+ and let y ∕= x in RN

+ . To prove (4.3) it is enough to show that

lim
n→∞

|y − an|
n

7777x− an −
n2

|y − an|2
(y − an)

7777 = |x− ỹ|.
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In fact:

|y − an|
n

7777x− an −
n2

|y − an|2
(y − an)

7777 =
7777
|y − an|

n
(x− an)−

n

|y − an|
(y − an)

7777

=

7777
|y − an|2(x− an)− n2(y − an)

n|y − an|

7777

=

7777
|y − an|2x− n2y + an (n

2 − |y − an|2)
n|y − an|

7777

=

7777
|y − an|2x− n2y + an (−|y|2 + 2nyN)

n|y − an|

7777

→ |x− y + 2yNeN |, as n → ∞

= |x− ỹ|.

This conclude the proof.

The following result is a consequence of ρ belongs to L∞
loc

%
RN

+

&
.

Lemma 4.0.2. Let ρ ∈ L∞
loc

%
RN

+

&
, ρ(x) ≥ 0 and ρ not identically zero. Then, for each n ∈ N

the linear equation -
−∆u = ρ(x) in Bn(an)

u = 0 on ∂Bn(an)
(Pn)

has only one weak positive solution un ∈ H1
0 (Bn(an)), which increases with n . In addition

un(x) =

ˆ

Bn(an)

GBn(an)(x, y)ρ(y)dy.

Proof. The proof of this lemma is similar to that of Lemma 2.1.3.

Before continuing, we will give some properties of the Green’s function in the half space and
a technical inequality that will help us throughout this section.

Lemma 4.0.3.

i) There exist c1, c2 > 0 such that for each x ∕= y ∈ RN
+ :

c1xNyN
|x− y|N−2|x− ỹ|2 ≤ GRN

+
(x, y) ≤ c2xNyN

|x− y|N−2|x− ỹ|2 . (4.4)

ii) There exists c > 0 such that for each x ∕= y ∈ RN
+ :

cxNyN
|x− ỹ|N ≤ GRN

+
(x, y). (4.5)

iii) There exists c > 0 such that for each x ∕= y ∈ RN
+ :

cxNyN
(|x|+ 1)N(|y|+ 1)N

≤ GRN
+
(x, y). (4.6)
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iv) Let s > 0. Then, there exists c > 0 such that for y ∈ RN
+\B(x, s) and each x ∕= y ∈ RN

+ :

c|xi − yi|
+

1

|x− y|N − 1

|x− ỹ|N

,
≤ GRN

+
(x, y), for i = 1, . . . , N. (4.7)

v) If |x− y|2 ≤ xNyN , then
'
3−

√
5

2

(
xN ≤ yN ≤

'
3 +

√
5

2

(
xN . (4.8)

Proof.

i) Using the fact

|x− ỹ|2 − |x− y|2 = 4xNyN and |x− y| ≤ |x− ỹ| for all x, y ∈ RN
+ ,

we get

1

|x− y|N−2
− 1

|x− ỹ|N−2
=

1

|x− y|N−2

'
1−

+
|x− y|
|x− ỹ|

,N−2
(

≥ 1

|x− y|N−2

'
1−

+
|x− y|
|x− ỹ|

,2
(

=
4xNyN

|x− y|N−2|x− ỹ|2 for all x ∕= y ∈ RN
+ and N ≥ 4.

Similarly, if N = 3 we have

1

|x− y| −
1

|x− ỹ| =
|x− ỹ|− |x− y|
|x− y||x− ỹ|

=
4xNyN

|x− y||x− ỹ|(x− ỹ|+ |x− y|)

≥ 2xNyN
|x− y||x− ỹ|2 for all x ∕= y ∈ RN

+ .

Therefore, there exists c1 > 0 such that

c1xNyN
|x− y|N−2|x− ỹ|2 ≤ GRN

+
(x, y).

In the similar way, using that

1−
+
|x− y|
|x− ỹ|

,N−2

≤ N − 2

2

'
1−

+
|x− y|
|x− ỹ|

,2
(

for all x ∕= y ∈ RN
+ and N ≥ 4,

we obtain the existence of a constant c2 > 0 such that

GRN
+
(x, y) ≤ c2xNyN

|x− y|N−2|x− ỹ|2 for all x ∕= y ∈ RN
+ .
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ii) Since |x− y| ≤ |x− ỹ| for all x, y ∈ RN
+ , (4.5) is a consequence of (4.4).

iii) Notice that

|x− ỹ|N = |x− a1 − (ỹ − a1)|N

≤ c
%
|x− a1|N + |ỹ − a1|N

&

≤ c
%
(|x|+ 1)N + (|y|+ 1)N

&

≤ c(|x|+ 1)N(|y|+ 1)N ,

for some constant c > 0. Therefore (4.6) is a consequence of (4.5).

iv) Let i = 1, . . . , N . Notice that

|xi − yi|
+

1

|x− y|N − 1

|x− ỹ|N

,
= c|xi − yi|ξ(x, y)GRN

+
(x, y) for all x ∕= y ∈ RN

+ ,

for some constant c > 0 and where we have defined

ξ(x, y) :=
|x− y|N−2|x− ỹ|N−2

|x− ỹ|N−2 − |x− y|N−2

+
1

|x− y|N − 1

|x− ỹ|N

,
for all x ∕= y ∈ RN

+ .

Thus, to prove (4.7), it is enough to show that there exists c > 0 such that for y ∈
RN

+\B(x, s) and each x ∕= y ∈ RN
+ :

|xi − yi|ξ(x, y) ≤ c.

In fact,

ξ(x, y) =
|x− ỹ|N−2|x− y|−2 − |x− y|N−2|x− ỹ|−2

|x− ỹ|N−2 − |x− y|N−2

=

%
|x− ỹ|N−2 − |x− y|N−2

&
(|x− y|−2 + |x− ỹ|−2)− |x− ỹ|N−4 + |x− y|N−4

|x− ỹ|N−2 − |x− y|N−2

= |x− y|−2 + |x− ỹ|−2 − |x− ỹ|N−4 − |x− y|N−4

|x− ỹ|N−2 − |x− y|N−2

≤ |x− y|−2 + |x− ỹ|−2 for all x ∕= y ∈ RN
+ and N ≥ 4.

Similarly, if N = 3, we have

ξ(x, y) = |x− y|−2 + |x− ỹ|−2 − |x− ỹ|−1 − |x− y|−1

|x− ỹ|− |x− y|

= |x− y|−2 + |x− ỹ|−2 +
1

|x− ỹ||x− y|

≤ 2
%
|x− y|−2 + |x− ỹ|−2

&
for all x ∕= y ∈ RN

+ .
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Therefore

ξ(x, y) ≤ 2
%
|x− y|−2 + |x− ỹ|−2

&
for all x ∕= y ∈ RN

+ and N ≥ 3.

On the other hand, since y ∈ RN
+\B(x, s) we also have ỹ ∈ RN

+\B(x, s) and hence

|xi − yi| ≤ |x− y| ≤

!
$"

$#

|x− y|2
s

|x− ỹ|2
s

,

and thus

|xi − yi|ξ(x, y) ≤
4

s
.

This completes the proof of iv).

v) Since (xN − yN)
2 ≤ |x − y|, we have (xN − yN)

2 ≤ xNyN . Then x2
N − 3xNyN + y2N ≤ 0,

or equivalently

'
yN −

'
3−

√
5

2

(
xN

('
yN −

'
3 +

√
5

2

(
xN

(
≤ 0,

which implies that '
3−

√
5

2

(
xN ≤ yN ≤

'
3 +

√
5

2

(
xN .

The following result will help us to use the Green’s formulas.

Lemma 4.0.4. Let ρ ∈ L∞
loc

%
RN

+

&
, ρ(x) ≥ 0 and ρ not identically zero. Assume that

w(x) =

ˆ

RN
+

/
Γ(x− y)− Γ(x− ỹ)

0
ρ(y)dy,

belongs to L∞(RN
+ ). Then w ∈ C1(RN

+ ) and for any x ∈ RN
+

Diw(x) =

ˆ

RN
+

/
DiΓ(x− y)−DiΓ(x− ỹ)

0
ρ(y)dy, for i = 1, . . . , N.

Proof. Let z ∈ RN
+ and δ > 0 such that B(z, δ) ⋐ RN

+ . Fix x ∈ B(z, δ) and put 0 < γ < zN−δ
2

.
Then it is clear that B := B(x, γ) ⊂ RN

+ . Now, for each i = 1, . . . , N we define

vi(x) =

ˆ

RN
+

/
DiΓ(x− y)−DiΓ(x− ỹ)

0
ρ(y)dy, .

Thus

vi(x) =
−1

NwN

ˆ

RN
+

+
xi − yi
|x− y|N − xi − ỹi

|x− ỹ|N

,
ρ(y)dy.
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Let i = 1, . . . , N − 1. Then, from Lemma 4.0.4 iv) there exists C > 0 such that

|vi(x)| =

77777
−1

nwN

ˆ

RN
+

+
xi − yi
|x− y|N − xi − yi

|x− ỹ|N

,
ρ(y)dy

77777

=
1

nwN

77777

ˆ

RN
+ \B(x,γ)

+
xi − yi
|x− y|N − xi − yi

|x− ỹ|N

,
ρ(y)dy +

ˆ

B(x,γ)

+
xi − yi
|x− y|N − xi − yi

|x− ỹ|N

,
ρ(y)dy

77777

≤ 1

NwN

ˆ

RN
+ \B(x,γ)

|xi − yi|
+

1

|x− y|N − 1

|x− ỹ|N

,
ρ(y)dy +

2

NwN

ˆ

B(x,γ)

1

|x− y|N−1
ρ(y)dy

≤ C

ˆ

RN
+ \B(x,γ)

GRN
+
(x, y)ρ(y)dy +

2,ρ,L∞(B)

NwN

ˆ

B(0,1)

1

|y|N−1
dy

= Cw(x) + 2,ρ,L∞(B),

If i = N , similar to the previous case, from Lemma 4.0.4 ii), iv) and since xN and yN are less
than or equal to |x− ỹ|, there exists C > 0 such that

|vN(x)| =

77777
−1

nwN

ˆ

RN
+

+
xN − yN
|x− y|N − xN + yN

|x− ỹ|N

,
ρ(y)dy

77777

=

77777
−1

NwN

ˆ

RN
+

+
xN − yN
|x− y|N − xN − yN

|x− ỹ|N

,
dx+

2

NwN

ˆ

RN
+

yN
|x− ỹ|N ρ(y)dy

77777

≤ Cw(x) + 2,ρ,L∞(B) +
2

NwN

'
ˆ

RN
+ \B(x,γ)

yN
|x− ỹ|N ρ(y)dy +

ˆ

B(x,γ)

yN
|x− ỹ|N ρ(y)dy

(

≤ Cw(x) + 2,ρ,L∞(B) +
2

NwNxN

ˆ

RN
+ \B(x,γ)

xNyN
|x− ỹ|N ρ(y)dy +

2,ρ,L∞(B)

NwN

ˆ

B(x,1)

1

|x− ỹ|N−1
dy

≤ Cw(x) + 2,ρ,L∞(B) +
2C

NwNxN

ˆ

RN
+ \B(x,γ)

GRN
+
(x, y)ρ(y)dy +

2,ρ,L∞(B)

NwNx
N−1
N

ˆ

B(x,1)

dy

≤ C

+
1 +

2

NwNxN

,
w(x) + 2

+
1 +

1

xN−1
N

,
,ρ,L∞(B).

Therefore, since w ∈ L∞(RN
+ ), it follows that vi is well defined. We now show that vi = ∇wi

for each i = 1, . . . , N . To do so, first notice that for each x ∈ RN
+ , |x− ỹ| ∕= 0, then is clear that

Di

ˆ

RN
+

Γ(x− ỹ)ρ(y)dy =

ˆ

RN
+

DiΓ(x− ỹ)ρ(y)dy, for i = 1, . . . , N.

The proof of

Di

ˆ

RN
+

Γ(x− y)ρ(y)dy =

ˆ

RN
+

DiΓ(x− y)ρ(y)dy, for i = 1, . . . , N,

for all x ∈ RN
+ , it follows as the proof of Lemma 2.1.4, in which it is only necessary to eliminate

the singularity x = y using an auxiliary function. Therefore, w ∈ C1(RN
+ ) and vi = ∇wi for

each i = 1, . . . , N .
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To facilitate reading we will give the definition again of the property (H+), given in the
introduction.

Definition 4.0.5. Let ρ ∈ L∞
loc

%
RN

+

&
, ρ(x) ≥ 0 and ρ not identically zero. We say that ρ has

the property (H+) if there exists a bounded solution of:

−∆u = ρ(x) in RN
+ . (P+)

Next we will prove the main result of this section which gives a necessary and sufficient
condition to have the property (H+).

Proof of Theorem 6. Suppose the property (H+) is satisfied. Then, there exists U a bounded
solution of (P+). By adding a constant, we may always assume that U ≥ 0 in RN

+ . On the
other hand, for each n ∈ N, from Lemma 4.0.2, Problem (Pn) has only one increasing weak
solution un ∈ H1

0 (Bn(an)). In addition

un(x) =

ˆ

Bn(an)

GBn(an)(x, y)ρ(y)dy. (4.9)

Let ϕ ∈ C∞
0 (Bn(an)) with ϕ ≥ 0. Then, from Green’s identities

−
ˆ

Bn(an)

U∆ϕdx =

ˆ

Bn(an)

∇U∇ϕdx =

ˆ

RN

∇U∇ϕdx =

ˆ

RN

ρ(x)ϕ(x)dx

≥
ˆ

Bn(an)

ρ(x)ϕ(x)dx =

ˆ

Bn(an)

∇un∇ϕdx

= −
ˆ

Bn(an)

un∆ϕdx,

from where
ˆ

Bn(an)

(U − un)∆ϕdx ≤ 0.

Therefore, the maximum principle implies that un ≤ U in Bn for all n ∈ N. Then

u(x) := lim
n→∞

un(x) exist for every x ∈ RN
+ ,

and

u ≤ U in RN
+ . (4.10)
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From representation formula (4.9), using Lemma 4.0.1 and Fatou’s Lemma, we get

ˆ

RN
+

GRN
+
(x, y)ρ(y)dy =

ˆ

RN
+

/
Γ(x− y)− Γ(x− ỹ)

0
ρ(y)dy

=

ˆ

RN
+

lim
n→∞

GBn(an)(x, y)ρ(y)dy

=

ˆ

RN
+

lim
n→∞

GBn(an)(x, y)χBn(an)(y)ρ(y)dy

≤ lim inf
n→∞

ˆ

RN
+

GBn(an)(x, y)χBn(an)(y)ρ(y)dy

= lim inf
n→∞

ˆ

Bn(an)

GBn(an)(x, y)ρ(y)dy

= lim inf
n→∞

un(x)

= u(x).

Consequently, from (4.10), we obtain

w∞(x) :=

ˆ

RN
+

GRN
+
(x, y)ρ(y)dy ∈ L∞(RN

+ ).

Reciprocally, assuming w∞ ∈ L∞(RN
+ ), from Lemma 4.0.4 w∞ ∈ C1(RN

+ ). Let ϕ ∈ C∞
0 (RN

+ ),
then using Green’s identities, Fubini’s theorem and since Γ(x − ỹ) is a harmonic function for
all x, y ∈ RN

+ , we have

ˆ

RN
+

∇w∞(x)∇ϕ(x)dx = −
ˆ

RN
+

w∞(x)∆ϕ(x)dx

= −
ˆ

RN
+

'
ˆ

RN
+

/
Γ(x− y)− Γ(x− ỹ)

0
ρ(y)dy

(
∆ϕ(x)dx

= −
ˆ

RN
+

ρ(y)

'
ˆ

RN
+

/
Γ(x− y)− Γ(x− ỹ)

0
∆ϕ(x)dx

(
dy

= −
ˆ

RN
+

ρ(y)

'
ˆ

RN
+

Γ(x− y)∆ϕ(x)dx

(
dy

=

ˆ

RN
+

ρ(y)ϕ(y)dy,

where the last equality is true following a similar argument to that of the proof of Lemma
2.1.3. Thus, the function w∞ ∈ H1(RN

+ ) ∩ L∞(RN
+ ) provides a bounded positive solution of

(P+).
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Corollary 4.0.6. Suppose that ρ satisfies property (H+). Then w∞ is minimal positive solution
of (P+).

Proof. From Theorem 6, since ρ satisfies property (H+), it follows that w∞ is a bounded
positive solution of (P+). Let U be a bounded positive solution of (P+). The maximum
principle implies implies that un ≤ U in Bn for all n ∈ N. Then

u(x) := lim
n→∞

un(x) exist for every x ∈ RN
+ ,

and u ≤ U in RN
+ . Thus, using Fatou’s Lemma and representation formula (4.9) we have

U(x) ≥ lim
n→∞

un(x) ≥ w∞(x) for every x ∈ RN
+ ,

Therefore, w∞ is minimal positive solution of (P+).

Next, we will give some examples of ρ for which we will have existence and nonexistence of
a bounded solution of the Problem (P+).

Lemma 4.0.7. Assume that ρ(x) = 1 for all x ∈ RN
+ . Then, Problem (P+) has no bounded

solution.

Proof. Let x ∈ RN
+ with xN > 1. From Theorem 6 and Lemma 4.0.3 i), is sufficient to show

that
ˆ

RN
+

xNyN
|x− y|N−2|x− ỹ|2ρ(y)dy = ∞.

In fact, notice that if |x− y|2 ≤ xNyN , from Lemma 4.0.3 v) there exists c ∈ (0, 1) such that
cxN ≤ yN , which implies that

ˆ

|x−y|2≤xNyN

1

|x− y|N dy ≥
ˆ

|x−y|2≤cx2
N

1

|x− y|N dy.

Hence, using
|x− ỹ|2 − |x− y|2 = 4xNyN for all x, y ∈ RN

+ ,

and considering RN
+ ∩ (|x− y|2 ≤ cx2

N) = |x− y| ≤
√
cxN , it follows that

ˆ

RN
+

xNyN
|x− y|N−2|x− ỹ|2dy ≥

ˆ

RN
+∩(|x−y|2≤xNyN )

xNyN
|x− y|N−2(|x− y|2 + 4xNyN)

dy

≥ 1

5

ˆ

RN
+∩(|x−y|2≤cx2

N )

1

|x− y|N−2
dy

=
1

5

ˆ

|x−y|≤
√
cxN

1

|x− y|N−2
dy

=
NwN

5

ˆ

√
cxN

0

rN−1

rN−2
dr

=
NwN

5

ˆ

√
cxN

0

rdr

→ ∞ as xN → ∞.
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Lemma 4.0.8. Let ρ : RN
+ → R be a measurable function not identically zero that satisfies

0 ≤ ρ(x) ≤ 1

(1 + |x|)βxγ
N

for x ∈ RN
+ ,

with 0 ≤ γ < 1 and 2 < β + γ. Then, Problem (P+) has a solution u ∈ H1(RN
+ ) ∩ L∞(RN

+ ).
Furthermore if β + γ < N + 1, then:

lim
|x|→∞

u(x) = 0 and lim
xN→0

u(x) = 0.

Proof. Assume 0 ≤ γ < 1 and 2 < β + γ. From Theorem 6 it is sufficient to show that
w∞ ∈ L∞(RN

+ ). For this purpose, first we will prove that

ˆ

RN
+

xNyN
|x− y|N−2|x− ỹ|2ρ(y)dy ∈ L∞(RN

+ ), (4.11)

since Lemma 4.0.3 i) would implies that w∞ ∈ L∞(RN
+ ).

We estimate the previous integral by separating the half space as the union of RN
+ ∩B(x, 1)

with RN
+\B(x, 1), where x ∈ RN

+ .

In fact, using that xN ≤ |x− ỹ| and yN ≤ |x− ỹ| we have

ˆ

RN
+∩B(x,1)

xNyN
|x− y|N−2|x− ỹ|2ρ(y)dy ≤

ˆ

B(x,1)

y1−γ
N

|x− y|N−2|x− ỹ|dy

=

ˆ

B(x,1)

y1−γ
N

|x− y|N−2|x− ỹ|1−γ|x− ỹ|γ dy

≤
ˆ

B(x,1)

1

|x− y|N+γ−2
dy

= NwN

ˆ 1

0

rN−1

rN+γ−2
dr

= NwN

ˆ 1

0

r1−γdr

=
NwN

2− γ
.

Now, to estimate (4.11) in RN
+\B(x, 1) we will separate in two cases:

i) Assume that |x| < 1. Since for y ∈ RN
+\B(x, 1) we have

|y| = |x− y − x| ≥
777|x− y|− |x|

777 = |x− y|− |x| ≥ |x− y|− 1,
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then
ˆ

RN
+ \B(x,1)

xNyN
|x− y|N−2|x− ỹ|2ρ(y)dy ≤

ˆ

|x−y|≥1

1

|x− y|N+γ−2(1 + |y|)β dy

≤
ˆ

|x−y|≥1

1

|x− y|N+β+γ−2
dy

= NwN

ˆ ∞

1

r1−β−γdr

=
NwN

β + γ − 2
.

ii) Assume that |x| ≥ 1. To estimate
ˆ

RN
+ \B(x,1)

xNyN
|x− y|N−2|x− ỹ|2ρ(y)dy (4.12)

let us first notice that

|x− y| ≥
777|x|− |y|

777 = |y|− |x| ≥ |y|
2
,

provided that |y| ≥ 2|x|. This implies:

ˆ

(RN
+ \B(x,1))∩(|y|≥2|x|)

xNyN
|x− y|N−2|x− ỹ|2ρ(y)dy ≤

ˆ

|y|≥2|x|

|x|y1−γ
N

|x− y|N |y|β dy

≤ 1

2

ˆ

|y|≥2|x|

|y|2−γ

|x− y|N |y|β dy

≤ 2N−1

ˆ

|y|≥2|x|

1

|y|N+β+γ−2
dy

= 2N−1NwN

ˆ ∞

2|x|
r1−β−γdr

=
2N−β−γNwN

β + γ − 2
|x|2−β−γ

≤ 2N−β−γNwN

β + γ − 2
.

Now, to estimate (4.12) in RN
+\B(x, 1)) ∩ (|y| ≤ 2|x|), we will do it in 3 regions:

A1 = (RN
+\B(x, 1)) ∩

+
|x|
2

≤ |y| ≤ 2|x|
,
,

and

A2 = (RN
+\B(x, 1)) ∩

+
1

2
≤ |y| ≤ |x|

2

,
, A3 = (RN

+\B(x, 1)) ∩
+
|y| ≤ 1

2

,
.
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The first one:
ˆ

A1

xNyN
|x− y|N−2|x− ỹ|2ρ(y)dy ≤

ˆ

(RN
+ \B(x,1))∩( |x|

2
≤|y|≤2|x|)

1

|x− y|N+γ−2|y|β dy

≤ 2β

|x|β

ˆ

1≤|x−y|≤3|x|

1

|x− y|N+γ−2
dy

=
2βNwN

|x|β

ˆ 3|x|

1

r1−γdr

≤ 2β32−γNwN

2− γ
|x|2−β−γ

≤ 2β32−γNwN

2− γ
.

To estimate (4.12) in the second region, note that if |y| ≤ |x|
2
, we have

|x− y| ≥
777|x|− |y|

777 = |x|− |y| ≥ |x|
2

≥ |y|,

then
ˆ

A2

xNyN
|x− y|N−2|x− ỹ|2ρ(y)dy ≤

ˆ

(RN
+ \B(x,1))∩( 1

2
≤|y|≤ |x|

2
)

1

|x− y|N+γ−2|y|β dy

≤
ˆ

(RN
+ \B(x,1))∩( 1

2
≤|y|≤ |x|

2
)

1

|y|N+β+γ−2
dy

≤
ˆ

1
2
≤|y|

1

|y|N+β+γ−2
dy

= NwN

ˆ ∞

1
2

r1−β−γdr

=
NwN

(β + γ − 2)22−β−γ
.

Finally, to estimate (4.12) in the third region, notice that if |y| ≤ 1
2
, we have

|x− y| ≥
777|x|− |y|

777 = |x|− |y| ≥ |x|− 1

2
,

then
ˆ

A3

xNyN
|x− y|N−2|x− ỹ|2ρ(y)dy ≤

ˆ

(RN
+ \B(x,1))∩(|y|≤ 1

2
)

1

|x− y|N+γ−2
dy

≤ 1

(|x|− 1
2
)N+γ−2

ˆ

|y|≤ 1
2

dy

=
wN

2N(|x|− 1
2
)N+γ−2

≤ wN2
γ−2.
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Therefore, there exists C > 0 such that

ˆ

RN
+ \B(x,1)

xNyN
|x− y|N−2|x− ỹ|2ρ(y)dy ≤ C.

Hence, we get existence of a constant C > 0 such that

ˆ

RN
+

xNyN
|x− y|N−2|x− ỹ|2ρ(y)dy ≤ C for all x ∈ RN

+ .

Now, we assume 0 ≤ γ < 1 and 2 < β + γ < N + 1. Following an argument similar to the
previous one, it is possible to show that

lim
xN→0

w∞(x) = 0.

For instance if |x| < 1, it follows that

ˆ

RN
+ \B(x,1)

xNyN
|x− y|N−2|x− ỹ|2ρ(y)dy ≤ xN

ˆ

|x−y|≥1

1

|x− y|N+γ−1(1 + |y|)β dy

≤ xN

ˆ

|x−y|≥1

1

|x− y|N+β+γ−1
dy

=
NwN

β + γ − 1
xN ,

and

ˆ

RN
+∩B(x,1)

xNyN
|x− y|N−2|x− ỹ|2ρ(y)dy ≤ xN

ˆ

B(x,1)

1

|x− y|N+γ−1
dy

= NwNxN

ˆ 1

0

r−γdr

=
NwN

1− γ
xN .

Now, to prove

lim
|x|→∞

w∞(x) = 0,

we see that it is enough to show that

ˆ

(RN
+ \B(x,ε))∩(|y|≤ |x|

2
)

xNyN
|x− y|N−2|x− ỹ|2ρ(y)dy → 0 as |x| → ∞, (4.13)

for ε > 0 enough small.
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Finally we will prove (4.13). In fact, using that |x− y| ≥ |x|
2
and since N − β − γ + 1 > 0,

it follows that
ˆ

(RN
+ \B(x,ε))∩(|y|≤ |x|

2
)

xNyN
|x− y|N−2|x− ỹ|2ρ(y)dy ≤

ˆ

|y|≤ |x|
2

|x|y1−γ
N

|x− y|N |y|β dy

≤ 2N

|x|N−1

ˆ

|y|≤ |x|
2

1

|y|β+γ−1
dy

=
2NNwN

|x|N−1

ˆ
|x|
2

0

rN−β−γdr

=
2β+γ−1NwN

N − β − γ + 1
|x|2−β−γ .

This concludes the proof.

To finish, we have the following nonexistence result.

Lemma 4.0.9. Let ρ : RN
+ → R be a measurable function that belongs to L∞

loc

%
RN

+

&
and satisfies

1

(1 + |x|)βxγ
N

≤ ρ(x) for x ∈ RN
+ ,

with γ ≥ 1 and β + γ ≤ 2. Then, Problem (P+) has no bounded solution.

Proof. To prove that the Problem (P+) has no bounded solution, from Theorem 6 and
Lemma 4.0.3 i), it is sufficient to show that

ˆ

RN
+∩(|y|≥|x|)

xNyN
|x− ỹ|N ρ(y)dy = ∞.

In fact, let x ∈ RN
+ with xN > 2N+1. Using that |x − ỹ|N ≤ 2N

%
|x|N + |ỹ|N

&
≤ 2N+1|y|N for

|y| ≥ |x|, we have
xN

|x− ỹ|N ≥ 1

|y|N .

Thus, there exists C > 0 such that
ˆ

RN
+∩(|y|≥|x|)

xNyN
|x− ỹ|N ρ(y)dy ≥

ˆ

RN
+∩|y|≥|x|

1

|y|N(1 + |y|)βyγ−1
N

dy

≥ C

ˆ

|y|≥|x|

1

|y|N+β+γ−2
dy,

= ∞
which implies the desired.

Remark 4.0.1. From Theorem 6, if ρ satisfies property (H+), then w∞ is a bounded positive
solution of Problem (P+). Furthermore, since for the problem in the whole space RN , we have
show that the solution u∞ vanishing at infinity (see Corollary 2.1.9 ), we will also hope that

lim inf
|x|→∞

w∞(x) = 0 and lim inf
xN→0

w∞(x) = 0.

However, this claim still is open problem.
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