Bienvenidos(as) al DMCC | Departamento de Matemática y Ciencia de la Computación

Francisco Fuica Villagra

Francisco Fuica Villagra
  • Teléfono:
  • Oficina: 523
  • Correo: francisco.fuica@usach.cl
  • Jerarquía: Asistente
  • Títulos y/o Grados:
    • Licenciado en Matemática, Pontificia Universidad Católica de Valparaíso, 2015.
    • Magíster en Ciencias, mención Matemática, Universidad Técnica Federico Santa María, 2018.
    • Doctorado en Matemática, Pontificia Universidad Católica de Valparaíso, Universidad Técnica Federico Santa María y Universidad de Valparaíso, 2022.
  • Identificadores:

Publicaciones recientes:

  1. F. Fuica. A Posteriori error estimates for a bang-bang optimal control problem. Applied Mathematics & Optimization, 91(1), 74, 2025.
  2. F. Bersetche, F. Fuica, E. Otárola, and D. Quero. Fractional, semilinear, and sparse optimal control: a priori error bounds. Applied Mathematics & Optimization, 91(1), 20, 2025.
  3. A. Allendes, G. Campaña, F. Fuica, and E. Otárola. Darcy’s problem coupled with the heat equation under singular forcing: analysis and discretization. IMA Journal of Numerical Analysis, 44(6), 3683–3716, 2024.
  4. F. Bersetche, F. Fuica, E. Otárola, and D. Quero. Bilinear optimal control for the fractional Laplacian: analysis and discretization. SIAM Journal on Numerical Analysis, 62(3), 1344–1371, 2024.
  5. T. Führer and F. Fuica. A DPG method for linear quadratic optimal control problems. Computer and Mathematics with Applications, 166, 106–117, 2024.
  6. F. Fuica, F. Lepe, E. Otárola, and D. Quero. An optimal control problem for the Navier-Stokes equations with point sources. Journal of Optimization Theory and Applications, 196(1), 590–616, 2023.
  7. F. Fuica and E. Otárola. A posteriori error estimates for an optimal control problem involving a bilinear state equation. Journal of Optimization Theory and Applications, 194(2), 543–569, 2022.
  8. A. Allendes, F. Fuica, and E. Otárola. Error estimates for a pointwise tracking optimal control problem of a semilinear elliptic equation. SIAM Journal on Control and Optimization, 60(3), 1763–1790, 2022.
  9. A. Allendes, F. Fuica, E. Otárola, and D. Quero. A posteriori error estimates for semilinear optimal control problems. ESAIM: Mathematical Modelling and Numerical Analysis, 55(5), 2293–2322, 2021.
  10. A. Allendes, F. Fuica, E. Otárola, and D. Quero. A posteriori error estimates for a distributed optimal control problem of the stationary Navier-Stokes equations. SIAM Journal on Control and Optimization, 59(4), 2898–2923, 2021.
  11. F. Fuica, F. Lepe, E. Otárola, and D. Quero. A posteriori error estimates in $W^{1,p} \times L^p$ spaces for the Stokes system with Dirac measures. Computer and Mathematics with Applications, 94, 47–59, 2021.
Subir